
IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1104

Beyond Binary Search: Parallel In-place
Construction of Implicit Search Tree Layouts

Kyle Berney, Henri Casanova, Ben Karsin, and Nodari Sitchinava

Abstract—We present parallel algorithms to efficiently permute a sorted array into the level-order binary search tree (BST), level-order
B-tree (B-tree), and van Emde Boas (vEB) layouts in-place. We analytically determine the complexity of our algorithms and empirically
measure their performance. When considering the total time to permute the data in-place and to perform a series of search queries,
the vEB layout provides the best performance on the CPU. Given an input of N=537 million 64-bit integers, the benefits of query
performance (compared to binary search) outweigh the cost of in-place permutation when performing as few as 0.37% of N queries.
On the GPU, results depend on the particular architecture, with the B-tree and vEB layouts performing the best. The number of queries
necessary to reach the break-even point with binary search ranges from 1.3% to 8.9% of N=1,074 million 32-bit integers.

Index Terms—permutation, searching, parallel, in-place

F

1 INTRODUCTION

S EARCHING is a fundamental computational problem
that arises in many applications. When many queries

are expected to be performed, data is often stored in a data
structure that is conducive to efficient searching. Pointer-
based search trees are an example of such a data structure;
for example, a binary search tree (BST) is a binary tree such
that for every vertex v, the key stored at v is greater than
all the keys stored in the subtree rooted at v’s left child
and smaller than all the keys stored in the subtree rooted
at v’s right child. On modern architectures with a multi-
level memory hierarchy, I/O-efficient variations of search
trees, e.g. B-trees, typically outperform BSTs due to their
improved locality of reference.

A drawback of pointer-based search tree data structures
is that they take up a constant factor more space than the
data itself, which can be prohibitive in limited-memory
environments. In contrast, if the data is stored in sorted
order, efficient search can be performed using binary search
without using any extra space. The advantage of search
trees lies in their efficient updates (insertions and dele-
tions of elements). However, in the case of static data (i.e.,
data which will not change in the future), storing data in
sorted order and performing binary search seems to be the
preferred approach. For example, Khuong and Morin [1]
observe that binary searches on static sorted arrays account
for 10% of the computation time for the AppNexus ad-
bidding engine; and searches on static data arise in various
domains such as finance [2], sales [3], advertising [1], and
numerical analysis [4].

Despite its simplicity and optimal Θ(logN) complexity
in the classical RAM model, binary search on a sorted array
of sizeN is not the most efficient approach on modern mem-
ory hierarchies. This is due to the fact that the complexity
metric of the RAM model does not capture an algorithm’s
locality of reference, which is key to efficient implemen-
tations on modern memory designs. One way to see the

This material is based upon work supported by the National Science Founda-
tion under Grant No. CCF-1533823 and CCF-1911245.

inefficiency of binary search is to view the sorted array as an
implicit binary search tree. In an implicit tree, data is stored in
an array and the locations within the array define a one-to-
one mapping to the vertices of the corresponding (pointer-
based) tree. In this way, child-parent relationships of the
vertices are determined via index arithmetic. For example,
the i-th entry of a sorted array of size N corresponds to
the i-th vertex visited during the in-order traversal of a
complete1 BST on N vertices. Similarly, entries accessed
during a binary search for key x in a sorted array correspond
to the keys stored in the vertices on the root-to-leaf path
when searching for x in the corresponding BST. Thus, when
performing binary search on a sorted array of size N , the
i-th vertex visited, for i ∈ {2, ..., blogNc}, is n/2i+1 array
locations away from the (i− 1)-th (previous) vertex visited.

Since queries on B-trees are more cache-efficient than on
BSTs, it is not surprising that querying data stored in an
implicit B-tree layout also outperforms binary search both
in theory and practice on modern architectures [1], [5], [6].
Consequently, if many search queries need to be performed,
it may be worth spending extra time to re-arrange the sorted
data into a memory layout that will increase locality of
reference of each query.

Given the abundance of available parallelism in modern
CPUs and GPUs, in this paper we study efficient parallel
transformations of a static sorted array into various implicit
search tree layouts (defined in Section 1.2) and the mini-
mum number of queries needed to justify the extra time to
perform such transformations in practice. Moreover, since
binary search on already sorted data does not require any
additional space, we require that these transformations be
performed in-place.

1. In a complete binary tree every level, except possibly the last one,
is completely filled and all leaves on the last level are as far left as
possible.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1105

1.1 Models of Computation
In this work, we analyze the time complexity of our parallel
algorithms in the Parallel Random Access Machine (PRAM)
model [7]. Given an input of size N , the PRAM model
defines two complexity metrics of an algorithm: work, de-
noted W (N), is the total number of operations performed
by all processors, and depth (also known as span or critical
path length), denoted D(N), is the maximum number of
operations performed by any one processor if the algo-
rithm is executed using an infinite number of processors.
Then, the runtime of an algorithm on P processors can
be computed using Brent’s Scheduling Principle [8] as
T (N,P) = O

(
W (N)
P +D(N)

)
. In this work, we consider

the CREW PRAM model, which allows simultaneous read
accesses, but disallows simultaneous write accesses to the
same data by multiple processors.

We analyze the I/O complexity of our parallel algo-
rithms in the Parallel External Memory (PEM) model [9]
– a parallel extension of the (sequential) External Memory
(EM) model [10]. In the EM model, a processor contains
fast internal memory of size M and data initially resides
in (much larger) external memory. To process data, that
data must first be transferred into internal memory using
contiguous blocks of size B. The complexity metric of the
EM model, I/O complexity, is the number of such blocks
transferred during computation. The EM model has also
been used to model a single level of cache in modern
processor design: external memory represents main mem-
ory (DRAM), internal memory represents cache, transfer
blocks represent cache-lines, and the I/O complexity of
an algorithm represents the number of accesses to slow
DRAM. In practice, it has been shown that I/O-efficient
algorithms outperform efficient RAM algorithms [11], [12].
In the PEM model, each of P processors contains private
memory of size M and share the external memory. The
data is still transferred between external memory and an
individual processor’s internal memory in blocks of size B.
The (parallel) I/O complexity, denoted Q(N,P), is defined
as the maximum number of blocks transferred by any one
of the processors throughout the computation.

1.2 Memory Layouts of Static Search Trees
We say a layout is a BST layout if it is defined by the breadth-
first left-to-right traversal of a complete binary search tree.
Given the index i of a node v in the BST layout, the indices
of the left and right children of v can be computed in O(1)
time as 2i + 1 and 2i + 2 (using 0-indexing), respectively.
Figure 1 depicts an example 15-node BST layout.

A complete B-tree [13] is a complete multi-way search
tree, where each node (except possibly the last leaf node)
contains exactly B elements and every internal node (ex-
cept possibly the last one) has exactly B + 1 children. B-
trees exhibit improved cache efficiency (compared to a BST)
when employing a B value that coincides with the cache
line size of the particular machine. The Level-order B-tree
layout is defined by the breadth-first left-to-right traversal
of a complete B-tree. Figure 2 depicts the B-tree layout for
N = 26 and B = 2.

The van Emde Boas (vEB) layout [14] is defined recursively
as follows. The vEB layout of a tree with a single vertex is the

8

4 12

2 6

1 3 5 7 9 11 13 15

10 14

4 12 2 6 10 14 1 3 5 7 9 11 13 158

Fig. 1. BST layout for N = 15.

101 23 4 56 7 8 1112 13 1415 16 17 19 2021 22 2324 25 26

21 54 7 8

3 6

10 11 13 14 16 17

12 15

19 20 22 23 25 26

21 24

9 18

9 18

Fig. 2. Level-order B-tree layout for N = 26 and B = 2.

vertex itself. Given a complete binary search tree T with N
vertices and height h = blogNc > 0, consider the top sub-
tree T0 of height b(h− 1)/2c containing r = 2b(h−1)/2c − 1
vertices, and r + 1 bottom subtrees T1, T2, . . . , Tr+1, each
of height d(h− 1)/2e and each rooted at the children of
the (r + 1)/2 leaves of T0. The vEB layout of T is defined
recursively as the vEB layout of T0, followed by the vEB
layouts of each T1, T2, . . . , Tr+1. Figure 3 depicts an example
vEB layout with 15 nodes.

The above definition of the vEB layout for N 6= 2h+1− 1
complicates the permutation algorithms described in Sec-
tions 3.3 and 4.1 because the number of vertices in each
bottom subtree may be different. Instead, in this work, we
modify the definition of the vEB layout for N 6= 2h+1 − 1
as follows. Let r = 2b(h−1)/2c − 1 and l = 2d(h−1)/2e − 1.
The top subtree T0 of the vEB layout will always contain
r vertices and the remaining N − r elements will form
x = d(N − r)/le bottom subtrees, T1, T2, . . . , Tx. Each of
the first y = b(N − r)/lc bottom subtrees, T1, T2, . . . , Ty ,
will consist of exactly l vertices. If N − r is not a multiple
of l, i.e., x = y + 1, then the last bottom subtree, Tx, will
contain 1 ≤ l′ < l vertices. As in the standard defini-
tion, the vEB layout consists of T0, immediately followed
by T1, T2, . . . , Tx, with each subtree laid out recursively
(T0, T1, . . . , Ty uses the standard vEB layout and if x = y+1,
then Tx uses this modified approach).

In our definition of the vEB layout, at each recursive
level, there is at most one bottom subtree that contains a
different number of vertices than all other bottom subtrees
and is always located at the end of the layout. This ob-
servation allows us to easily adapt the permutation algo-
rithms described in Sections 3.3 and 4.1 and query optimiza-
tions described in Section 7.1 to work with arrays of sizes
N 6= 2h+1 − 1, without affecting the asymptotic analysis.

The I/O complexity of performing a search query on
an array of size N in the BST layout is O(log(N/B)), and
Θ(logB N) in the B-tree and vEB layouts [5], [14]. In theory,
because the definition of the vEB layout does not make use
of the parameter B, i.e., it is cache-oblivious [15], querying
the vEB layout on architectures with multiple levels of cache

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1106

4 12 2 1 3 5 7 9 11 13 158 6 10 14

8

4 12

2 6

1 3 5 7 9 11 13 15

10 14

Fig. 3. van Emde Boas (vEB) layout for N = 15.

will result in the asymptotically optimal number of accesses
at every level of the memory hierarchy [14].

The relative performance of querying each of these
search tree layouts has been studied empirically. Ladner
et al. [6] measure the cache performance and instruction
count of querying the B-tree and vEB layouts, with results
indicating that the B-tree layout achieves the best perfor-
mance on CPUs. The experimental results of Brodal et al. [5]
indicate that the performance of the vEB and B-tree layouts
are comparable, both outperforming the BST layout. These
results are contradicted, however, by Khuong and Morin [1],
who show that, by using explicit prefetching and other
optimizations, the BST layout can outperform both the B-
tree and vEB layouts.

1.3 Previous Work on Permutations

The transformation from sorted order to an implicit search
tree layout is a special case of permuting an array of N
elements. Let π : [N] → [N] be an arbitrary permutation.
For the purpose of this paper, we assume that π is given
as a function that can be described concisely in O(1) space
(e.g., not as a table that explicitly gives π(i) for each i). Let
τπ be the time it takes to evaluate π(i). For example, while
τπ = O(1) for the BST and B-tree layouts, it is not obvious
how to compute π(i) faster than O(log logN) time for the
vEB layout.

Note that for the problem of permuting N elements
using P processors, Ω((N/P) ·τπ) is the trivial lower bound
in the PRAM model. If there is no in-place requirement, any
permutation π can be implemented in O (dN/P e · τπ) time
in parallel: each entry A[i] can be copied to B[π(i)] indepen-
dently of each other. Thus, the BST and B-tree layouts can
be constructed from sorted data in O (dN/P e) time and the
vEB layout can be constructed in O (dN/P e log logN) time.

It is well known that every permutation can be de-
composed into disjoint cycles. A cyclic permutation can be
implemented sequentially in-place trivially by starting at a
single vertex and following the cycle. However, for a general
permutation this approach still needs additional space to
mark the elements that have already been permuted, unless
it can identify all disjoint cycles up front.

When it comes to in-place permutations, Fich et al. [16]
showed that every permutation π can be implemented se-
quentially in-place in O ((N logN) · τπ) time. For a special
case when the data is permuted from a sorted order, they
observed that they can check if an element has already
been moved by computing the inverse permutation π−1

to determine if the element is not in its original sorted
order. Thus, for this special case, the time can be reduced
to O (N · (τπ + τπ−1)). However, it is not obvious how to
parallelize their algorithm, nor is it trivial to compute π−1

for the vEB layout.
Yang et al. [17] observed that every permutation is the

product of two involutions. A permutation π is an invo-
lution if it is its own inverse, i.e., π(π(i)) = i for all i.
Moreover, every involution is composed of disjoint cycles
of length at most 2, i.e., can be implemented in parallel and
in-place by swapping pairs of elements. Thus, if the two
involutions of a permutation are known, this permutation
can be implemented in parallel and in-place. This result
is non-constructive, i.e., given an arbitrary permutation π
it is not clear how to determine the two involutions that
define π; however, the authors show how to determine the
involutions of a cyclic permutation.

One permutation of particular interest for this work is
the perfect shuffle [18]: a permutation in which two lists
of equal length are interleaved perfectly. A generalization
is the k-way perfect shuffle, where k equal-length lists are
interleaved perfectly [19]. These permutations have many
applications (e.g., parallel processing [20], Fast Fourier
Transforms (FFT) [20], [21], Kronecker products [21], [22],
encryption [23], sorting [20], and merging [24], [25], [26]).
Ellis et al. [27], [28] use a number-theoretic approach to
compute representative elements of the disjoint cycles of the
perfect shuffle and the k-way perfect shuffle, thus making
a sequential in-place approach possible. Jain [29] relies on
the fact that 2 is primitive root of 3k for any k ≥ 1, which
makes it possible to compute the representative elements
of the disjoint cycles recursively for any N . Finally, Yang et
al. [17] use the product of involutions approach and describe
the involutions for the k-way perfect shuffle for two cases:
(i) N = kd and (ii) N = kd for some integer d > 1. For (i),
the involutions involve reversing the base-k representation
of element indices. For (ii), the involutions involve comput-
ing modular inverses of element indices and finding greatest
common divisors. We use these results of Yang et al. [17] for
designing our involution-based permutation algorithms.

1.4 Parallel In-place Computations
There is a bit of ambiguity in the literature when it comes
to the definition of in-place algorithms. Strictly speaking,
a (sequential) algorithm is said to be in-place if it uses at
most Θ(1) additional space (a processor needs at least one
register to perform any useful work) [26]. However, for
a recursive algorithm, at least Ω(logN) additional space
is needed to implement the recursion stack of a balanced
recursion. Therefore, it is reasonable for an in-place algo-
rithm to use up toO(logN) additional space, although often
such algorithms are called in-situ [24], [30]. When it comes
to parallel algorithms, there is an additional complication.
Each of the P processors needs to have Ω(1) space to
perform any meaningful work. Moreover, for asynchronous
recursion, Ω(logN) space is needed per processor, i.e., a
total of Ω(P logN) additional space. Therefore, if P = N

logN ,
the total additional space becomes Ω(N) and trivially non-
in-place algorithms could be viewed as being in-place. To
avoid this situation, we define in-place parallel computation
as follows:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1107

Definition 1. A parallel algorithm running on P processors each
having an internal memory of size M is called in-place if it uses
at most O(P (M + logN)) additional space and works correctly
for any P ≥ 1 processors.

In the PRAM model, M = O(1) is the number of
registers per processor so it reduces to O(P logN); while
in the PEM model, M is the size of each processor’s internal
memory. Note that the requirement for an algorithm to work
correctly for any P ≥ 1 precludes the view of trivially non-
in-place algorithms designed for large P as being in-place.

2 CONTRIBUTIONS

We present parallel algorithms for the in-place permutation
of a sorted array into the BST, B-tree, and vEB layouts, and
analyze their time and I/O complexities. We propose two
types of algorithms:

1) Building on the work of Yang et al. [17] and Fich
et al. [16], we determine the pairs of involutions
required to permute a sorted array into the BST
layout. We also determine the logB+1N pairs of
involutions required to permute a sorted array into
the B-tree layout. The B-tree involutions can be used
in order to permute a sorted array into the vEB
layout.

2) Using a cycle-leader approach, we develop an effi-
cient parallel in-place algorithm to permute a sorted
array into the vEB layout. By recursively applying
this approach, we are able to design algorithms for
permuting a sorted array into the B-tree layout. The
B-tree layout algorithm can be used to obtain the
BST layout by setting B = 1.

The involution-based approach entails reversing a subset
of the digits of numbers represented in an arbitrary base-k
(for BST k = 2, for B-tree k = B+1). If implemented in soft-
ware, the worst-case complexity of this operation is linear
with the number of digits in the base-k representation of the
integer N being reversed, i.e., O(logkN). However, some
architectures2 provide it as a built-in hardware primitive,
i.e., it takes O(1) time. Therefore, we parameterize the time
of this operation as TREVk

(N).
To the best of our knowledge, our algorithms are the first

parallel in-place algorithms for permuting a sorted array
into search tree layouts. The time and I/O complexities
of our algorithms are summarized in Table 1. Our cycle-
leader algorithms exhibit better I/O complexity, while our
involution-based algorithms are much simpler and trivial to
parallelize.

We evaluate these algorithms experimentally on multi-
core CPU and GPU architectures. We find that, compared to
a binary search on non-permuted input, the permutation
overhead of our permutation algorithms is offset by the
query time for as few as 0.0037N search queries on a CPU
and 0.013N on a GPU.

The remainder of this paper is organized as follows.
Section 3 presents our involution-based algorithms and
Section 4 presents our cycle-leader algorithms, each section

2. E.g., Nvidia GPUs implement this operation in hardware for
k = 2.

analyzing the time complexity of these algorithms. For ease
of exposition, in Sections 3 and 4 we consider only perfect
trees, i.e., complete trees in which every level is full. Sec-
tion 5 analyzes the I/O complexity of our algorithms. Sec-
tion 6 discusses extensions of our algorithms to non-perfect
trees. Section 7 goes over experimental optimizations and
Section 8 presents experimental results. Finally, Section 9
concludes with a summary.

3 INVOLUTION APPROACH

3.1 BST Layout

A perfect BST contains N = 2d − 1 vertices. As mentioned
in Section 1, Fich et al. [16] propose a sequential in-place
algorithm to permute a sorted array into the BST layout.
They note that the permutation satisfies the property that
for a given index i = (x10j)2 in binary representation, the
index of that element in the BST layout is π(i) = (0j1x)2.
Let REVk(b, i) be the operation that reverses the b least
significant digits of the base-k representation of the integer
i. The previously mentioned permutation can be computed
as π(i) = REV2(d − (j + 1), (REV2(d, i)). Since REV2 is
an involution [16], we can perform the permutation π in
parallel in just two rounds of O(N) independent swaps.

The time to compute π(i) depends on the time to
perform the REV2 operation, which we quantify precisely
for our particular hardware platforms in Section 8. Thus,
this algorithm has depth D(N) = O(TREV2

(N)) and work
W (N) = O(N · TREV2

(N)).

3.2 B-tree Layout

The B-tree layout algorithm relies on the k-way perfect
shuffle involution approach developed by Yang et al. [17].
Let us first review their results.

Let Jr(i) = g · (r · (ig)−1 (mod N−1
g)) where g is the

greatest common divisor of i andN−1. Yang et al. [17] show
that forN = kd andN = kd the k-way perfect shuffle can be
implemented as Ξ1(i) = REVk(d, REVk(d−1, i)) and Ξ2(i) =
Jk(J1(i)), respectively, for any integer d > 1. We note that
the k-way “un-shuffle”, which we use, can be performed
by simply reversing the order in which the involutions are
performed.

A perfect B-tree has N = (B + 1)d − 1 elements, for
some d > 1. Since each leaf node contains B contiguous
elements from the sorted array, every (B + 1)-th element
is stored in a non-leaf (i.e., internal) node. Let Si, for i ∈
{0, 1, 2, ..., B}, denote the list of elements at locations i +

j(B+ 1), for j ∈ {0, 1, ...,
⌊

N
(B+1)

⌋
}. In other words, each Si

is comprised of the elements starting at i, strided by B + 1.
By this definition, SB contains all internal elements and Sl,
for 0 ≤ l ≤ B−1, contains the l-th element of each leaf node.
We first perform the (B + 1)-way perfect un-shuffle (via
Ξ1 while using or simulating 1-indexing), which will gather
each Si into contiguous space and lay them out in sequence.
We then apply theB-way perfect shuffle (via Ξ2 while using
or simulating 0-indexing) on all Sl lists to interleave the leaf
elements back into their corresponding leaf nodes, i.e., into
their correct positions. All leaf elements are thus correctly
permuted and we recurse on SB .

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1108

TABLE 1
Asymptotic time and I/O complexity bounds of each of our algorithms. N is the input size, P is the number of processors, M and B are the sizes

of the internal memory and the transfer block, respectively, in the PEM model. K = MIN(N
P
,M) and TREVk

(N) is the time complexity of reversing
the digits of number N in the base-k representation.

Algorithm Time complexity I/O complexity

Involution BST O
(

N
P
· TREV2

(N)
)

O
(

N
P

)
Involution B-tree O

((
N
P

+ logB+1 N
)
logN

)
O
(

N
P

+B logB+1
N
K

)
Involution vEB O

(
N
P

logN
)

O
(

N
P

log logK N
)

Cycle-leader BST O
((

N
P

+ logN
)
logN

)
O
((

N
PB

+ log N
K

)
log N

K

)
Cycle-leader B-tree O

((
N
P

+ logB+1 N
)
logB+1 N

)
O
((

N
PB

+ logB+1
N
K

)
logB+1

N
K

)
Cycle-leader vEB O

(
N
P

log logN
)

O
(

N
PB

log logK N
)

Recall that REVk can take up to O(logkN) time. Finding
the modular inverse, however, requires using the extended
Euclidean algorithm [17], which takes O(logN) time. The
latter dominates the running time, resulting in O(logN)
time for both operations. The work and depth complexities
of our B-tree permutation algorithm are given in Proposi-
tion 2 and 3, respectively.

Proposition 2.

W (N) = W

(
N

B + 1

)
+O(N logN)

= O(N logN) .

Proposition 3.

D(N) = D

(
N

B + 1

)
+O(logN)

= O(logB+1N · logN) .

3.3 van Emde Boas Layout
We are able to apply the B-tree layout algorithm for the vEB
layout of height h, by usingB = 2d(h−1)/2e−1 and recursing
on each subtree of the vEB layout. The resulting work and
depth complexities are:

Proposition 4.

W (N) =
√
N ·W

(√
N
)

+O(N logN)

= O(N logN) .

Proposition 5.

D(N) = D
(√

N
)

+O(logN)

= O(logN) .

4 CYCLE-LEADER APPROACH

4.1 van Emde Boas Layout
Recall from Section 1.2 that we define Ti as the i-th subtree
of size O(

√
N): T0 is the “root” subtree consisting of r =

2b(h−1)/2c− 1 vertices of the upper
⌊
h−1
2

⌋
levels, where h =

blogNc, while T1, . . . , Tr+1 are “leaf” subtrees consisting
of l = 2d(h−1)/2e − 1 vertices each. Let A[ai : bi] be the
interval within the input array where the elements of Ti
should be moved to. In particular, a0 = 1, b0 = r and for all
1 ≤ j ≤ r + 1, aj = r + (j − 1)l + 1 and bj = r + jl. Our

algorithm first moves each Ti into A[ai : bi], which we call
the equidistant gather operation, then recursively permutes
each A[ai : bi] into the vEB layout. (Our equidistant gather
operation is general enough to work for any r ≤ l.)

We use Ti[a : b] to denote the subset of nodes of Ti from
the a-th smallest to the b-th smallest in the sorted order. E.g.,
Ti[1 : k] represents the first k smallest elements of Ti.

The following proposition bounds the range in the input
array, where the elements of the leaf subtrees Tj , for j ≥ 1,
are initially located:

Proposition 6. For all i = r − j + 2, 1 ≤ j ≤ r + 1, Tj [i : l]
are already in their destination interval A[aj : bj]. If i > l, then
no elements of Tj are in their destination interval.

Proof. Since the input is in sorted order, for all 1 ≤ i, j ≤ l,
Tj [i] is initially located at index iorig = (j − 1)(l + 1) + i.
Hence, we check if iorig ≥ aj = r+ (j − 1)l+ 1. Solving for
i results in i ≥ r − j + 2.

From the above proposition, we know that T1[r + 1 :
l], T2[r : l], ..., Tr+1[1 : l] are already in their destination
intervals and only T1[1 : r], ..., Tr[1] need to be moved.

We first consider a sequential strategy to perform the
equidistant gather in-place: we perform r rounds of swap-
ping, where after round i, all elements in the subtree Ti
are in A[ai : bi]. Figure 4 illustrates the first few rounds of
swapping for r = l. We see that, initially, all elements of T0
are distributed throughout the array. After the first round,
T0 is in A[a0 : b0] and T1 becomes distributed throughout
the array. After repeating this process r times, each Ti is in
A[ai : bi], however, the elements in each Ti may not be in
sorted order. Specifically, we need to perform a circular shift
to the right by r+1− i places (or equivalently l− (r+1− i)
to the left) on each Ti.

We can parallelize this algorithm by unrolling the r se-
quential swap rounds and identifying the resulting disjoint
cycles. We identify r disjoint cycles of the following form:

T0[1] 7→ T1[1] ,

T0[2] 7→ T1[2] 7→ T2[1] ,

T0[3] 7→ T1[3] 7→ T2[2] 7→ T3[1] ,

...
T0[r] 7→ T1[r] 7→ ... 7→ Tr−1[2] 7→ Tr[1] .

Since we can identify each element in each disjoint cycle,
its position in the cycle, and the length of the cycle, as

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1109

T1 T2 Tr+1

T0

1 2 3 41 2 3 4 1 2 3 4

T0 T2 Tr+1

1 2 3 41 2 3 4 1 2 3 4

T0 T1 Tr+1

2 31 2 3 4 41 2 3 4 1

T0 T1 Tr+1T2

1 2 3 4 41 2 3 4 14 1 2 3

Fig. 4. Illustration of the series of swaps needed to sequentially perform
the equidistant gather operation for r = l.

mentioned in Section 1.3, we can implement circular shifts
in parallel and in-place in O(1) depth and O(N) work using
the involutions of Yang et al. [17]. Therefore, since both
stages of our algorithm are comprised of disjoint circular
shifts, we can perform the equidistant gather in O(1) time
and O(N) work. The work and depth complexities of this
algorithm are:

Proposition 7.

W (N) =
√
N ·W (

√
N) +O(N)

= O(N log logN) .

Proposition 8.

D(N) = D(
√
N) +O(1)

= O(log logN) .

4.2 B-tree Layout
The idea is similar to the above vEB cycle-leader approach,
except we have r =

⌊
N

(B+1)

⌋
and l = B. Therefore, we need

to extend the equidistant gather operation for r > l. We call
this version the extended equidistant gather operation.

In a perfect B-tree of height h, N = (B + 1)h+1 − 1.
Let C =

⌈
N

(B+1)2

⌉
. To perform the extended equidistant

gather, we partition the array into (B + 1) partitions, where
each partition will contain C internal elements (except for
the first one, which will contain C − 1 internal elements)
and BC leaf elements. We move the internal elements of
each partition to the front of that partition by applying the
extended equidistant gather recursively on each partition.
We then move the internal elements to the front of the whole
array by applying the equidistant gather while treating each
chunk of C elements as a single unit, and while ignoring
the first C − 1 internal elements of the first partition. At
the base case of the recursion C = 1 and we can apply the
equidistant gather directly to bring the internal elements to
the front.

Since the equidistant gather takes O(N) work and O(1)
depth, the extended equidistant gather takes:

Proposition 9.

W ′(N) = (B + 1) ·W ′
(

N

B + 1

)
+O(N)

= O(N logB+1N)

Proposition 10.

D′(N) = D′
(

N

B + 1

)
+O(1)

= O(logB+1N)

Once all the internal elements are gathered to the front
of the array, we recursive on the internal elements, resulting
in the following complexities:

Proposition 11.

W (N) = W

(
N

B + 1

)
+W ′(N)

= W

(
N

B + 1

)
+O(N logB+1N)

= O(N logB+1N)

Proposition 12.

D(N) = D

(
N

B + 1

)
+D′(N)

= D

(
N

B + 1

)
+O(logB+1N)

= O(log2
B+1N)

4.3 BST Layout
We can apply the B-tree cycle leader algorithm (Section 4.2)
to the BST layout by setting B = 1, resulting in O(N logN)
work and O(log2N) depth. Although this is worse than
the involution-based algorithm from Section 3.1, the cycle-
leader algorithm exhibits better spatial locality, which we
analyze in the next section.

5 I/O OPTIMIZATIONS

In this section, we analyze the I/O complexity of our
proposed algorithms in the parallel external memory (PEM)
model [9] – a parallel extension of the EM model. When
applicable, we present additional modifications to the algo-
rithms to improve the I/O efficiency.

Let K = MIN
(
N
P ,M

)
and assume that P ≤ N

B , i.e., each
processor processes at least one block, and M ≥ 2B+O(1),
i.e., each processor can swap at least two blocks. In Sec-
tion 5.2, we increase this assumption to M ≥ B2 (standard
tall-cache assumption) and consequently P ≤ N

B2 .

5.1 Involution-based Algorithms
We first consider the involution-based algorithms described
in Section 3. The swaps performed by these algorithms can
be an arbitrary distance away from each other. Hence, in
the worst case these algorithms will perform O(1) I/Os per
swap. Thus, each iteration of an involution performs O(NP)
I/Os. For the B-tree and vEB layouts, however, once the
subproblem is of sizeM or less, it will fit in internal memory.
Proposition 13 and 14 provides the I/O complexity of the B-
tree layout and vEB layout, respectively.

Proposition 13.

Q(N,P) =

{
O (N/B) if N ≤M and P = 1

Q
(

N
B+1

, MIN
(
P, N

B(B+1)

))
+O

(
N
P

)
otherwise

= O

(
N

P
+B logB+1

N

K

)
,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1110

Proposition 14.

Q(N,P) =

{
O (N/B) if N ≤M and P = 1⌈√

N
P

⌉
Q
(√

N,
⌈

P√
N

⌉)
+O

(
N
P

)
otherwise

= O

(
N

P
log logK N

)
.

5.2 vEB Cycle-leader Algorithm

For the cycle-leader approach, we rely on performing paral-
lel circular shifts of elements. We perform the circular shifts
using the technique presented by Yang et al. [17], which
involves two rounds of array reversals. We can reverse
k elements in-place and in parallel by performing

⌊
k
2

⌋
independent swaps. Specifically, index i swaps with index
k − i − 1 (using 0-indexing). Thus, to optimize for I/Os,
we can swap elements in groups of B, provided that every
group of B elements are located in contiguous memory
locations. Therefore, we can perform a circular shift of N
elements in O(N

PB) I/Os. For the remainder of the section,
assume every circular shift uses this optimization.

The vEB cycle-leader approach, described in Section 4.1,
employs the equidistant gather operation, which relies on
circular shifts. However, the equidistant gather performs
a circular shift on elements strided by distance O(

√
N)

and are thus not in contiguous memory. To avoid the I/O
inefficiency of such an access pattern, we propose an initial
transposition phase to block elements in each disjoint cycle
together.

We can view the sorted array as an (r + 1) × (l + 1)
row-major matrix with the bottom-right element removed.
We can ignore the last row, which contains Tr+1, since these
elements do not move during the cycles. We also ignore the
last column of the matrix, which contains the r elements of
T0. Additionally for r < l, we ignore the remaining right-
most (l − r) columns, as these elements do not participate
in any cycles.

Thus, we consider a square matrix of size r× r. Figure 5
illustrates this representation for r = l, how each subtree
is contained therein, and what elements are contained in
each disjoint cycle of the gather. To improve I/O efficiency,
we perform a circular shift on each row i by i positions to
the right, which aligns the elements in each disjoint cycle
into columns. We then transpose the square matrix to align
the elements in each cycle into rows, placing all elements of
each cycle into contiguous memory.

Shifting r rows of r elements requires O(r2

PB) I/Os.
Assuming that P ≤ N/B2 and M ≥ B2, we can perform
matrix transposition inO(r2

PB) I/Os by tiling the matrix into
sub-matrices of size B ×B [10], [31].

With each disjoint cycle in contiguous memory, we
can now permute the first set of cycles of the equidis-
tant gather I/O efficiently and in parallel. Thus for r =
O(
√
N), this permutation takes 1

P

∑r
i=1

(
1 +O

(
i
B

))
=

O
(√

N
P + N

PB

)
= O

(
N
PB

)
I/Os, assuming that B ≤

√
N .

After performing the first set of disjoint cycles, we per-
form the inverse of the above transposition to permute the
elements back into their original order (this places each Ti
into contiguous memory). To do this, we transpose the r× r
matrix and perform a left circular shift on each row i by i
positions. We complete the equidistant gather operation by

T1
T2
T3
T4

Tr
Tr+1

T0

...

Fig. 5. Illustration of the distinct cycles of the equidistant gather oper-
ation for r = l. We consider memory as an (r + 1) × (l + 1) matrix.
Shifting each row and transposing the inner r× r matrix lets us perform
each cycle I/O efficiently.

performing a left circular shift on each subtree Ti by i − 1
positions. As outlined in Section 4.2, the equidistant gather
operation is applied recursively to perform the vEB layout
permutation. The I/O complexity of this algorithm is:

Proposition 15.

Q(N,P) =

{
O(N/B) if N ≤M and P = 1⌈√

N
P

⌉
Q
(√

N,
⌈

P√
N

⌉)
+O

(
N
PB

)
otherwise

= O

(
N

PB
log logK N

)
.

Alternatively, a simpler solution would be to forgo the
above described transposition phase and assign each pro-
cessor a group of O(B) cycles to permute sequentially. This
can be done I/O efficiently since B consecutive elements
will always contain elements from the same B cycles. The
resulting I/O complexity is O

((
N
PB +

√
N
B

)
log logK N

)
.

Although not as asymptotically efficient for large values
of P , in practice for most architectures P ≤

√
N and the

first term will dominate, resulting in the same asymptotic
complexity.

5.3 B-tree Cycle-leader Algorithm
Recall from Section 4.2 that the B-tree cycle-leader algorithm
is recursive, performing the equidistant gather operation
while considering chunks of C elements as single units.
Thus, as long as C ≥ B, every swap of C elements will be
I/O-efficient. Since C =

⌈
N

(B+1)2

⌉
for N = (B + 1)h+1 − 1,

only the base case (C = 1) will have a chunk size less than
B. However, assuming that M ≥ (B + 1)2 − 1 = Θ(B2),
we can simply load the base case into internal memory to
perform the permutation in O(B) I/Os. All other recursive
levels are performed I/O efficiently, thus:

Proposition 16.

Q′(N,P) =

{
O(N/B) if N ≤M and P = 1⌈
B+1
P

⌉
Q′
(

N
B+1

,
⌈

P
B+1

⌉)
+O

(
N
PB

)
otherwise

= O

(
N

PB
logB+1

N

K

)
.

Proposition 17.

Q(N,P) =

{
O(N/B) if N ≤M and P = 1

Q
(

N
B+1

, MIN(P, N
B(B+1)

)
)
+Q′(N,P) otherwise

= O

((
N

PB
+ logB+1

N

K

)
logB+1

N

K

)
.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1111

Recall from Section 4.3 that the BST algorithm is a
special case of the B-tree algorithm where the node size
is a single element. In this case, the last Θ(logB) rounds
will have a chunk size less than B. Thus, once N = O (B),
we load the array into internal memory which results in
O
((

N
PB + log N

K

)
log N

K

)
I/O’s.

6 EXTENSIONS TO NON-PERFECT TREES

Since the array is given in sorted order, any arbitrary size
BST or B-tree will be complete (though not necessarily
perfect). Hence for BSTs and B-trees, we can first permute
the non-full level of leaves to the end of the array. For a tree
of height h, the number of full elements, i.e., the elements
in the full levels, in a BST is I = 2h − 1, and in a B-tree
I = (B + 1)h − 1. The number of non-full elements, i.e.,
the elements in the non-full level, is L = N − I . In both
trees, the parents of non-full elements are initially located
in the array such that they partition the non-full elements.
We gather them to the front of the array and shift the non-
full elements to the end of the array via a circular shift.
To perform this gather, we apply a (B + 1)-way un-shuffle
(and additionally a B-way shuffle on the non-full elements
for B-trees) as seen in Section 3.2. Alternatively, we can
apply the extended equidistant gather operation described
in Section 4.2. This process takes D(N) = O(TREV2(L))
depth and W (N) = O(L · TREV2(L) + N) work for BSTs
(via 2-way un-shuffle); and D(N) = O(logB+1 L) depth
and W (N) = O(L(B + 1) · logB+1 L + N) work for B-
trees (via extended equidistant gather). After applying this
initial stage, we can proceed with the algorithm on the full
elements which form a perfect tree of height h− 1.

Recall from Section 1.2 that r = 2b(h−1)/2c − 1 is the
size of the top subtree, T0, and l = 2d(h−1)/2e − 1 is the
size of each of the first y = b(N − r)/lc bottom subtrees,
T1, T2, . . . , Ty . We first gather the first y elements of T0,
which are initially located at every (l + 1)-th array location,
to the front of the array. Then we shift the remaining r − y
elements of T0, which reside at the end of the array, to
the front of the array after the first y elements of T0. To
perform this gather, we can either perform the equidistant
gather operation described in Section 4.1; or we can apply
an (l+1)-way un-shuffle followed by an l-way shuffle on the
elements in T1, T2, . . . , Ty . The resulting work and depth of
this process using the equidistant gather is W (N) = O (N)
and D(N) = O (1). After this initial permutation, we
recurse on subtrees T0, T1, . . . , Ty using the algorithm for
the perfect vEB layout. If x = d(N − r)/le = y + 1, then we
additionally recurse on the last non-perfect subtree Tx using
the algorithm just described for the non-perfect vEB layout.

7 EXPERIMENTAL OPTIMIZATIONS

7.1 Query Optimizations
To provide a fair and thorough comparison of each search
tree layout, we consider query optimizations that have been
shown to improve performance.

The work of Khuong and Morin [1] found that using
explicit prefetching can significantly improve query perfor-
mance on BST layouts. As explicit prefetching instructions
are typically provided on modern CPUs, in Section 8.2 we

consider performance both with and without this optimiza-
tion to determine its efficacy in practice.

Brodal et al. [5] describe a vEB query approach that
utilizes a precomputed table of size O (logN). Consider an
arbitrary node in the vEB located at depth d and unfold
the vEB recursion such that the considered node is the
root of a vEB bottom tree. The precomputed table stores at
index d the number of nodes in the corresponding bottom
tree, the number of nodes in the corresponding top tree,
and the depth of the root of the corresponding top tree.
Thus, when performing a vEB query, the precomputed
table can be used to calculate the index of the next node
in O (1) time. For non-perfect vEBs, the last leaf subtree
may contain fewer elements than other leaf subtrees and
thus, may have a different subtree height. Due to this, an
additional table is needed to be able to query the non-
perfect leaf subtree. This is needed for all non-perfect leaf
subtrees for all recursive levels of the vEB. In the worst
case, this requires

∑log logN
i=0

logN
2i = O (logN) space. This

query optimization using the precomputed table(s) is used
throughout Section 8.

7.2 Hybrid BST Layout
For permuting non-perfect BSTs, we must perform an initial
permutation to gather and shift the non-full elements to
the end of the array (as described in Section 6). To do
this, we can either use the equidistant gather operation (i.e.,
cycle-leader approach) or a 2-way un-shuffle (i.e., involution
approach).

In the conference version of this paper, we found that the
involution approach performs better than the cycle-leader
approach for perfect BSTs. However, recall from Section 3.1
that the BST involution approach uses a pair of involutions
to permute the sorted array into the BST layout, which
does not require the use of any shuffles or un-shuffles. In
comparison, the involution approaches that do use shuffles
and un-shuffles (e.g. the B-tree involution permutation) do
not perform well. Therefore, we additionally consider the
BST hybrid approach, which uses the extended equidistant
gather for the initial permutation to gather the non-full
elements, then uses the pair of involutions to permute the
full elements into the BST layout. The BST hybrid approach
is additionally used in Section 8.

7.3 Modified van Emde Boas Layout
In the conference version of this paper, results on the
vEB permutation algorithms showed poor performance on
GPUs [32]. This slowdown is attributed to the recursive
implementation of these algorithms, which is known to de-
grade performance on GPUs. However, developing iterative
versions of these algorithms on the GPU is challenging,
due to the potentially uneven size of the top and bottom
trees in the vEB layout. Instead, we define a variant of the
vEB layout, which we call the modified van Emde Boas layout
(mvEB).

In the mvEB layout, the height of the bottom trees are
rounded up to the nearest power of two (at the expense
of the top subtree’s height being shortened by the same
change in height as the leaf subtrees). In this way, the bottom
subtrees are guaranteed to always be perfectly balanced, i.e.,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1112

all of the top and bottom trees in the following recursive
divisions always contain the same number of nodes. This
makes developing an iterative version for the perfectly
balanced subtrees possible in a single GPU kernel, for each
recursive division. In Section 8.3, the mvEB layout is used
instead of the recursively implemented vEB layout.

8 EXPERIMENTS

In this chapter we evaluate the performance of our search
tree permutation algorithms on both GPU and CPU archi-
tectures experimentally. We also quantify the performance
of querying each search tree layout to determine the overall
practical applicability of our algorithms.

8.1 Methodology
Our CPU platform consists of two 10-core Intel Xeon E5-
2680’s with 128GB of main memory and 25MB of L3 cache
with 64 byte cache lines. We use GCC 8.3.0 with the -O3
flag and use OpenMP [33] for parallelization. Our GPU plat-
forms are: (1) a Nvidia Tesla K40 with 2,880 compute cores,
12 GB of GDDR5 type global memory with a theoretical
bandwidth of 288 GB/s, and compute capability 3.5; (2) a
Nvidia Quadro M4000 with 1,664 compute cores, 8 GB of
GDDR5 type global memory with a theoretical bandwidth
of 192 GB/s, and compute capability 5.2; and (3) a Nvidia
GeForce RTX 2080 Ti with 4,352 compute cores, 11 GB of
GDDR6 type global memory with a theoretical bandwidth
of 616 GB/s, and compute capability 7.5. We use the CUDA
10.1 compiler with the -O3 and -use_fast_math flags.

Experiments are conducted on arrays of 64-bit integer
values (B = 8) on our CPU platform and 32-bit integer
values (B = 32) on our GPU platforms. Permutation ex-
periments are conducted on both perfect trees (powers of 2
minus 1 for BSTs and vEBs; and powers of (B + 1) minus 1
for B-trees) and non-perfect trees (powers of 10 for all trees;
and additionally powers of 2 minus 1 for B-trees). All exper-
imental results are averages over 10 trials and queries are
randomly sampled from a uniform distribution of 1, 2, . . . n,
making all the searches 100% successful. Some figures refer-
enced throughout this section can be found in Appendix A
and the code used in these experiments can be found at:
https://github.com/algoparc/Tree-Layouts.

8.2 CPU Results
Figure A.1 (respectively Figure A.2) plots the sequential
(respectively parallel) execution time vs. the input size of all
of the search tree layouts. The results indicate that our cycle-
leader approaches perform best in general, with the vEB
cycle-leader algorithm outperforming all other approaches
for 20 threads. This is expected since this algorithm has
lower I/O complexity than its competitors. Note that the
involution-based BST algorithm does not perform as well,
despite being work-efficient in the PRAM model. This is
because of the algorithm’s poor spatial locality of memory
accesses. Furthermore, since our CPU does not have a
hardware primitive bit-reversal operation, TREV2(N) takes
O (log b) time, where b is the number of bits stored (i.e.,
64). For non-perfect trees, we see an increase in runtime
for all layouts, except for the B-tree and vEB involution

permutations. The increase in runtime is significant for the
BST involutions (for both P = 1 and P = 20) and the BST
hybrid approach (for P = 20). This is due to the fact that
the BST involution permutation for perfect trees relies on a
single pair of involutions, which is faster than performing
either an unshuffle (which is used in the B-tree and vEB
involution permutations) or the extended equidistant gather
operation for B = 1 and P = 20 (which is used in the BST
cycle-leader permutation).

Figure A.3 plots the speed-up factors of the fastest per-
mutation algorithm for each tree layout versus the number
of threads (P) for N = 229 − 1. We observe that the B-
tree cycle-leader approach does not benefit from additional
threads after P = 9 with a peak speed-up factor of around 4.
Since the B-tree cycle-leader algorithm repeatedly performs
the equidistant gather on chunks of elements, to investigate
the cause of the speedup performance, we compare it to the
simplest analog: swapping the first half of an array with
the second half of the same array using chunks of elements.
The results are plotted in Figure A.4, where we see that
both procedures exhibit similar speed-up factors. Thus, we
conclude that there is an inherent bottleneck in permuting
chunks of elements, which inhibits the parallel performance
of the B-tree cycle-leader approach.

We compare the performance of each layout on a batch
of search queries. Since each layout has benefits and draw-
backs in terms of memory access patterns, we expect the
more cache-efficient layouts, such as the vEB and B-tree
layouts, to provide better query performance. Figure A.5
(and Figure A.6) shows the average time to sequentially
perform Q = 106 queries versus the input size. As a
baseline, we include results for a binary search performed
on the un-permuted sorted array. Notice the spikes in
runtime for binary search, which occurs when the array
size is close to a power of 2. This is due to cache-line
aliasing issues described in [1]. For other array sizes, binary
search outperforms BST querying without prefetching after
10 million elements and is competitive with vEB querying
until N = 227−1 elements. As mentioned in Section 7.1, we
compare the performance of BST querying with and without
explicit prefetching, which is an optimization observed to
improve BST query performance significantly in [1]. This
observation is corroborated by our results with a speedup
of 1.6-2.6 due to the use of explicit prefetching. Neverthe-
less, the B-tree layout provides the fastest querying once
N > 229 − 1. In spite of good locality, the vEB layout is on
average 48.45% slower than the B-tree layout due to more
costly index computations.

An important practical question is: for how many
queries is permutation worthwhile when compared to a
no-permutation binary search approach? To answer this
question, for each layout we measured the total runtime of
permuting (using the fastest algorithm as previously deter-
mined) a sorted array of N elements and then performing
Q queries on the resulting layout. Figure A.7 and Figure A.8
shows the sequential results versus the number of queries
for an input size of N = 229 − 1 and N = 1 billion array
elements, respectively. Similarly, Figure 6 and Figure A.9
shows the parallel results for P = 20. Sequentially, the B-
tree layout provides the highest overall performance, with
both fast query and permutation times. In parallel however,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1113

Fig. 6. Combined time of permuting and performing Q queries on an
array of N = 229−1 elements on the CPU using 20 threads. The fastest
permutation algorithm is used for each tree layout.

the lower cost of the vEB permutation offsets its increased
query overhead. Due to the slow permutation runtime of
the BST layout for non-perfect trees, for Q ≤ N , the cost
of permutation is never offset by the faster query runtime.
Table 2 summarizes the number of queries needed for it
to be worthwhile (compared to an equal number of binary
search queries) to permute and query on each search tree
layout.

8.3 GPU Results

Graphics Processing Units (GPUs) are many-core archi-
tectures that are designed to provide high computational
throughput, but designing algorithms and implementations
that can approach peak performance is known to be chal-
lenging. Two key features of the GPU architecture make it
compelling for this work: (1) GPUs have a relatively small
memory, making the in-place feature of our permutation al-
gorithms crucial; and (2) GPUs have high memory through-
put and many compute cores, making them effective for
a large number of independent search queries. We note
that when accessing global memory, coalesced accesses are
recommended to minimize the number of memory transac-
tions. Thus by using B = 32, each thread in a warp will
accesses consecutive memory locations resulting in O(1)
global memory transactions. For more details on modern
GPU architectures we refer interested readers to [34].

We developed GPU implementations of each of our per-
mutation algorithms using standard good practices for writ-
ing fast GPU code [34]. Recall that we use our modified van
Emde Boas layout (Section 7.3), rather than the van Emde
Boas layout. While each of our algorithms provides a high
degree of parallelism, synchronization and communication
overheads can significantly degrade GPU performance. Due
to this reason, we assign each thread to a query and have
threads execute independently of each other. For the B-tree
layout, in order to access each node of B = 32 elements
in a coalesced manner, each warp is assigned to a query
and warp-level communication primitives are utilized to
coordinate the search.

Figure A.10 (respectively Figure A.11 and Figure A.12)
plots the average permutation time versus the input size,
for the K40 (respectively Quadro M4000 and RTX 2080 Ti).

Fig. 7. Combined time to permute and query each layout on the Nvidia
RTX 2080 Ti with N = 230 − 1 elements. The fastest permutation
algorithm is used for each tree layout.

For all three GPU platforms, the general consensus is that
the modified van Emde Boas cycle-leader approach is the
fastest permutation algorithm. As noted in Section 8.2, this
is expected since the vEB algorithm has the lowest I/O
complexity. On the K40 and Quadro M4000 GPUs, both
the B-tree cycle-leader and BST involution approaches are
competitive until the BST involution algorithm shows a
sharp increase in runtime for N > 229 − 1 elements. Similar
to our CPU platform, the BST involutions and BST hybrid
permutations show a significant runtime increase for non-
perfect trees.

Figure A.13 (respectively Figure A.15 and Figure A.17)
shows the average time to perform 1 million queries on
each search tree layout and binary search on a sorted array
versus the input size, for the K40 (respectively Quadro
M4000 and RTX 2080 Ti). It is interesting to see that the
query performance varies depending on the GPU platform
used. On all GPU platforms, B-tree querying results in the
fastest runtime for N > 228 − 1 on the K40 and Quadro
M400 and N > 223 − 1 on the RTX 2080 Ti. On the K40 and
Quadro M4000, BST querying outperforms mvEB querying;
however on the RTX 2080 Ti, mvEB querying outperforms
BST querying for N ≥ 224 − 1. Furthermore, on the K40
and Quadro M4000 GPUs, a large increase in runtime is
observed for N > 229 − 1. For this reason, we measure the
total runtime of permuting and performing Q queries on
one perfect tree and one non-perfect tree for N ≤ 229 − 1
and similarly for N > 229 − 1.

Figure A.19, Figure A.20, and Figure A.21 shows the
combined runtime of permuting and querying each search
tree layout with N = 100 million elements on the K40,
Quadro M4000, and RTX 2080 Ti, respectively. Figure A.22,
Figure A.23, and Figure A.24 shows the combined runtime
of permuting and querying each search tree layout with
N = 229 − 1 elements on the K40, Quadro M4000, and
RTX 2080 Ti, respectively. Figure A.25, Figure A.26, and
Figure A.27 shows the combined runtime of permuting and
querying each search tree layout with N = 100 million
elements on the K40, Quadro M4000, and RTX 2080 Ti, re-
spectively. And lastly, Figure A.28, Figure A.29, and Figure 7
plot the combined runtime for N = 230 − 1 elements on the
K40, Quadro M4000, and RTX 2080 Ti, respectively. Table 8.3
summarizes the number of queries for which it becomes

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1114

TABLE 2
Number of queries needed for it to be beneficial (compared to an equal number of binary search queries) to perform each of the search tree layout

permutations. The B-tree layout has the lowest number of queries needed for P = 1; while the vEB layout performs better for P = 20.

Layout N = 229 − 1 and P = 1 N = 229 − 1 and P = 20 N = 1 billion and P = 1 N = 1 billion and P = 20

BST 30 million (5.59% of N) 9 million (1.68% of N) 212 million (21.2% of N) —
B-tree 8 million (1.49% of N) 6 million (1.12% of N) 52 million (5.2% of N) 170 million (17% of N)
vEB 10 million (1.86% of N) 2 million (0.37% of N) 97 million (9.7% of N) 144 million (14.4% of N)

TABLE 3
Number of queries needed for it to be beneficial (compared to an equal number of binary search queries) to perform each of the search tree layout

permutations on each of our GPU platforms with N = 100 million (first table), N = 229 − 1 (second table), N = 1 billion (third table), and
N = 230 − 1 (fourth table). On the K40 and Quadro M4000, the B-tree layout has the lowest number of queries needed; while on the RTX 2080 Ti,

the modified van Emde Boas (mvEB) layout beats both the B-tree and BST layouts.

Layout K40 Quadro M4000 RTX 2080 Ti

BST 34 million (34% of N) 47 million (47% of N) 83 million (83% of N)
B-tree 13 million (13% of N) 20 million (20% of N) 23 million (23% of N)
mvEB — 44 million (44% of N) 13 million (13% of N)

Layout K40 Quadro M4000 RTX 2080 Ti
BST 62 million (11.55% of N) 65 million (12.11% of N) 293 million (54.58% of N)
B-tree 45 million (8.38% of N) 55 million (10.24% of N) 119 million (22.17% of N)
mvEB 127 million (23.66% of N) 106 million (19.74% of N) 50 million (9.31% of N)

Layout K40 Quadro M4000 RTX 2080 Ti
BST 71 million (7.1% of N) 53 million (5.3% of N) 936 million (93.6% of N)
B-tree 14 million (1.4% of N) 14 million (1.4% of N) 194 million (19.4% of N)
mvEB 20 million (2% of N) 32 million (3.2% of N) 103 million (10.3% of N)

Layout K40 Quadro M4000 RTX 2080 Ti
BST 62 million (5.77% of N) 62 million (5.77% of N) 596 million (55.51% of N)
B-tree 14 million (1.3% of N) 15 million (1.4% of N) 217 million (20.21% of N)
mvEB 19 million (1.77% of N) 32 million (2.98% of N) 96 million (8.94% of N)

worthwhile to permute and query on the respective search
tree layout (compared to an equal number of binary search
queries). For non-perfect trees (N = 100 million and N = 1
billion), we see a significant increase in the percentage of
queries needed for the BST layout, mainly due to the high
cost of permutation. For N = 100 million on the K40, the
mvEB layout is never worth the cost of permuting because
binary search is faster than querying the mvEB layout until
N ≥ 227 − 1. Overall, for all input sizes, the B-tree layout
results in the lowest number of queries needed on the
K40 and Quadro M4000 GPUs, as it has both the fastest
permutation and query runtimes. However, on the RTX 2080
Ti, the mvEB is the best performing layout, due to it having
the fastest permutation runtime and second fastest query
runtime. We note that for a large number of queries on the
RTX 2080 Ti, we expect the better query performance of the
B-tree layout to eventually overcome the faster permutation
runtime of the mvEB layout.

9 CONCLUSION

Implicit search tree layouts can improve search query per-
formance by exploiting locality of reference and, conse-
quently, cache efficiency. However, given initially sorted
input, permuting it into a search tree layout requires extra
space and can be costly, thereby bringing into question
the usefulness of implicit search tree layouts in memory-

constrained environments and/or when few search queries
need to be performed.

In this work we present parallel in-place algorithms for
permuting a sorted array into popular search tree layouts.
Our algorithms exhibit the following features which make
them exceptionally practical: 1) they operate in-place, mak-
ing it possible to permute inputs that occupy all available
space; 2) they are efficient in parallel, allowing the use of
many-core architectures; and 3) our cycle-leader algorithms
are I/O-efficient, resulting in implementations that utilize
the cache hierarchy effectively. We measure the performance
of our algorithms on both CPU and GPU platforms, and key
results are as follows.

On the CPU, permuting a sorted array of N = 229 − 1
64-bit elements into the BST, B-tree, and vEB layouts, and
then searching for Q 64-bit queries, all in parallel, outper-
forms a parallel binary search on the original sorted array
when Q ≥ 9 million (1.68% of N), Q ≥ 6 million (1.12%
of N), and Q ≥ 2 million (0.37% of N), respectively. On the
latest GPU hardware available to us, the Nvidia RTX 2080 Ti
GPU, the same experiments on an array of N = 230 − 1
32-bit elements outperform binary search when Q ≥ 596
million (55.51% of N), Q ≥ 217 million (20.21% of N), and
Q ≥ 96 million (8.94% of N), for the BST, B-tree, and mvEB
layouts, respectively.

This work underscores the importance of I/O-efficiency
when designing parallel algorithms for modern manycore

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 1115

hardware. The development of efficient memory layouts, be-
yond searching, provides fertile ground for future research.

ACKNOWLEDGMENTS

We would like to thank Michael Bender for his helpful
suggestions.

REFERENCES

[1] P.-V. Khuong and P. Morin, “Array layouts for comparison-based
searching,” J. Exp. Algorithmics, vol. 22, pp. 1.3:1–1.3:39, 2017.

[2] A. Bradford, The Investment Industry for IT Practitioners, 2008.
[3] W. Inmon, D. Strauss, and G. Neushloss, DW 2.0: The Architecture

for the Next Generation of Data Warehousing, 2010.
[4] F. Cannizzo, “A fast and vectorizable alternative to binary search

in o(1) with wide applicability to arrays of floating point num-
bers,” Journal of Parallel and Distributed Computing, vol. 113, pp. 37
– 54, 2018.

[5] G. Brodal, R. Fagerberg, and R. Jacob, “Cache oblivious search
trees via binary trees of small height,” in Proc. of 13th ACM-SIAM
Symposium on Discrete Algorithms, 2002, pp. 39–48.

[6] R. E. Ladner, R. Fortna, and B.-H. Nguyen, “A comparison of
cache aware and cache oblivious static search trees using program
instrumentation,” in Experimental Algorithmics, 2002, pp. 78–92.

[7] J. JaJa, Introduction to Parallel Algorithms, 1992.
[8] R. P. Brent, “The parallel evaluation of general arithmetic expres-

sions,” Journal of the ACM, vol. 21, no. 2, pp. 201–206, 1974.
[9] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava, “Fun-

damental parallel algorithms for private-cache chip multiproces-
sors,” in Proc. of 20th ACM SPAA, 2008, pp. 197–206.

[10] A. Aggarwal and J. S. Vitter, “The input/output complexity of
sorting and related problems,” Commun. ACM, vol. 31, no. 9, pp.
1116–1127, 1988.

[11] Y.-J. Chiang, “Experiments on the practical I/O efficiency of
geometric algorithms: Distribution sweep vs. plane sweep,” in
Algorithms and Data Structures, 1995, pp. 346–357.

[12] D. Ajwani and N. Sitchinava, “Empirical evaluation of the parallel
distribution sweeping framework on multicore architectures,” in
European Symposium on Algorithms, 2013, pp. 25–36.

[13] R. Bayer and E. McCreight, “Organization and maintenance of
large ordered indices,” in Proc. of ACM SIGFIDET Workshop on
Data Description, Access and Control, 1970, pp. 107–141.

[14] H. Prokop, “Cache-oblivious algorithms,” Master’s thesis, MIT,
1999.

[15] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in 40th FOCS, 1999, pp. 285–297.

[16] F. E. Fich, J. I. Munro, and P. V. Poblete, “Permuting in place,”
SIAM Journal on Computing, vol. 24, no. 2, pp. 266–278, 1995.

[17] Q. Yang, J. Ellis, K. Mamakani, and F. Ruskey, “In-place permuting
and perfect shuffling using involutions,” Information Processing
Letters, vol. 113, no. 10, pp. 386 – 391, 2013.

[18] P. Diaconis, R. Graham, and W. Kantor, “The mathematics of
perfect shuffles,” Advances in Applied Mathematics, vol. 4, no. 2,
pp. 175 – 196, 1983.

[19] C. Ronse, “A generalization of the perfect shuffle,” Discrete Math-
ematics, vol. 47, pp. 293 – 306, 1983.

[20] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Transactions on Computers, vol. C-20, no. 2, pp. 153–161, 1971.

[21] D. D’Angeli and A. Donno, “Shuffling matrices, kronecker product
and discrete fourier transform,” Discrete Appl. Math, vol. 233, pp.
1 – 18, 2017.

[22] M. Davio, “Kronecker products and shuffle algebra,” IEEE Trans-
actions on Computers, vol. C-30, no. 2, pp. 116–125, 1981.

[23] S. F. Sultana and D. Shubhangi, “Video encryption algorithm and
key management using perfect shuffle,” International Journal of
Engineering Research and Applications, vol. 07, pp. 01–05, 2017.

[24] J. Ellis and M. Markov, “In-situ, stable merging by way of the
perfect shuffle,” The Computer Journal, vol. 43, no. 1, pp. 40–53,
2000.

[25] M. Dalkilic, E. Haytaoglu, and G. Tokatli, “A simple shuffle-based
stable in-place merge algorithm,” Proc. Computer Science, vol. 3, pp.
1049 – 1054, 2011.

[26] J. Ellis and U. Stege, “A provably, linear time, in-place and stable
merge algorithm via the perfect shuffle,” CoRR, 2015.

[27] J. Ellis, T. Krahn, and H. Fan, “Computing the cycles in the perfect
shuffle permutation,” Information Processing Letters, vol. 75, no. 5,
pp. 217 – 224, 2000.

[28] J. Ellis, H. Fan, and J. Shallit, “The cycles of the multiway perfect
shuffle permutation.” Discrete Mathematics & Theoretical Computer
Science, vol. 5, no. 1, pp. 169–180, 2002.

[29] P. Jain, “A simple in-place algorithm for in-shuffle,” CoRR, 2008.
[30] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting

and Searching, 1998.
[31] J. S. Vitter, “Algorithms and data structures for external memory,”

Found. Trends Theor. Comput. Sci., vol. 2, no. 4, pp. 305–474, 2008.
[32] K. Berney, H. Casanova, A. Higuchi, B. Karsin, and N. Sitchinava,

“Beyond binary search: Parallel in-place construction of implicit
search tree layouts,” in International Parallel and Distributed Pro-
cessing Symposium, 2018, pp. 1070–1079.

[33] OpenMP Architecture Review Board, “OpenMP application
program interface version 3.0,” 2008. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[34] NVIDIA, “CUDA programming guide 10.1,” 2019. [Online].
Available: http://docs.nvidia.com/cuda

Kyle Berney Kyle Berney is a Ph.D. candidate
in the Department of Information and Computer
Sciences at the University of Hawaii at Manoa.
His research interests are in parallel algorithms,
cache-efficient algorithms, and GPGPU comput-
ing.

Henri Casanova Dr. Henri Casanova is a Pro-
fessor in the Department of Information and
Computer Sciences at the University of Hawaii
at Manoa. His research is in the broad area of
high performance computing, and in particular
the scheduling and the simulation of parallel and
distributed applications. He obtained his Ph.D.
from the University of Tennessee, Knoxville in
1998.

Ben Karsin Dr. Ben Karsin is an engineer at
Nvidia Corp. He obtained his Ph.D. in the De-
partment of Information and Computer Sciences
at the University of Hawaii at Manoa in 2018.

Nodari Sitchinava Dr. Nodari Sitchinava is an
Associate Professor in the Department of Infor-
mation and Computer Sciences at the University
of Hawaii at Manoa. His research interests are
in parallel and cache-efficient algorithms. He ob-
tained his Ph.D. in Computer Science from the
University of California, Irvine in 2009.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 i

APPENDIX A
FIGURES FOR EXPERIMENTAL RESULTS

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 ii

Fig. A.1. Average time to permute a sorted array using each permutation algorithm on the CPU using 1 thread. The graph is displayed on a log-log
scale.

Fig. A.2. Average time to permute a sorted array using each permutation algorithm on the CPU using 20 threads. The graph is displayed on a
log-log scale.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 iii

Fig. A.3. Speed-up factor of the permutation algorithms on the CPU for N = 229 − 1.

Fig. A.4. Speed-up factor of the extended equidistant gather on chunks of elements and swapping the first half of an array with the second half on
the CPU.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 iv

Fig. A.5. Average time to perform 1 million queries on each search tree layout on the CPU for varying array size. The spikes in runtime for binary
search occurs when the array size is close to a power of 2 due to cache-aliasing issues. The graph is displayed on a linear scale to emphasize the
logarithmic shape of the querying.

Fig. A.6. Average time to perform 1 million queries on each search tree layout on the CPU for varying array size. The spikes in runtime for binary
search occurs when the array size is close to a power of 2 due to cache-aliasing issues. The graph is displayed on a log-log scale to see the
comparison of results between different array layouts.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 v

Fig. A.7. Combined time of permuting and performing Q queries on an array of N = 229 − 1 elements on the CPU using 1 thread. The fastest
permutation algorithm is used for each tree layout.

Fig. A.8. Combined time of permuting and performing Q queries on an array of 1 billion elements on the CPU using 1 thread. The fastest permutation
algorithm is used for each tree layout.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 vi

Fig. A.9. Combined time of permuting and performing Q queries on an array of 1 billion elements on the CPU using 20 threads. The fastest
permutation algorithm is used for each tree layout.

Fig. A.10. Average time to permute a sorted array using each permutation algorithm on the Nvidia K40. The graph is displayed on a log-log scale.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 vii

Fig. A.11. Average time to permute a sorted array using each permutation algorithm on the Nvidia Quadro M4000. The graph is displayed on a
log-log scale.

Fig. A.12. Average time to permute a sorted array using each permutation algorithm on the Nvidia GeForce RTX 2080 Ti. The graph is displayed
on a log-log scale.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 viii

Fig. A.13. Average time to perform 1 million queries on each search tree layout and binary search on a sorted array on the Nvidia K40. The graph
is displayed on a linear scale to emphasize the logarithmic shape of the querying.

Fig. A.14. Average time to perform 1 million queries on each search tree layout and binary search on a sorted array on the Nvidia K40. The graph
is displayed on a log-log scale to see the comparison of results between different array layouts.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 ix

Fig. A.15. Average time to perform 1 million queries on each search tree layout and binary search on a sorted array on the Nvidia Quadro M4000.
The graph is displayed on a linear scale to emphasize the logarithmic shape of the querying.

Fig. A.16. Average time to perform 1 million queries on each search tree layout and binary search on a sorted array on the Nvidia Quadro M4000.
The graph is displayed on a log-log scale to see the comparison of results between different array layouts.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 x

Fig. A.17. Average time to perform 1 million queries on each search tree layout and binary search on a sorted array on the Nvidia GeForce RTX
2080 Ti. The graph is displayed on a linear scale to emphasize the logarithmic shape of the querying.

Fig. A.18. Average time to perform 1 million queries on each search tree layout and binary search on a sorted array on the Nvidia GeForce RTX
2080 Ti. The graph is displayed on a log-log scale to see the comparison of results between different array layouts.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 xi

Fig. A.19. Combined time to permute and query each layout on the Nvidia K40 with N = 100 million elements. The fastest permutation algorithm is
used for each tree layout.

Fig. A.20. Combined time to permute and query each layout on the Nvidia Quadro M4000 with N = 100 million elements. The fastest permutation
algorithm is used for each tree layout.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 xii

Fig. A.21. Combined time to permute and query each layout on the Nvidia RTX 2080 Ti with N = 100 million elements. The fastest permutation
algorithm is used for each tree layout.

Fig. A.22. Combined time to permute and query each layout on the Nvidia K40 with N = 229 − 1 elements. The fastest permutation algorithm is
used for each tree layout.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 xiii

Fig. A.23. Combined time to permute and query each layout on the Nvidia Quadro M4000 with N = 229 − 1 elements. The fastest permutation
algorithm is used for each tree layout.

Fig. A.24. Combined time to permute and query each layout on the Nvidia RTX 2080 Ti with N = 229 − 1 elements. The fastest permutation
algorithm is used for each tree layout.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 xiv

Fig. A.25. Combined time to permute and query each layout on the Nvidia K40 with N = 1 billion elements. The fastest permutation algorithm is
used for each tree layout.

Fig. A.26. Combined time to permute and query each layout on the Nvidia Quadro M4000 with N = 1 billion elements. The fastest permutation
algorithm is used for each tree layout.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 xv

Fig. A.27. Combined time to permute and query each layout on the Nvidia RTX 2080 Ti with N = 1 billion elements. The fastest permutation
algorithm is used for each tree layout.

Fig. A.28. Combined time to permute and query each layout on the Nvidia K40 with N = 230 − 1 elements. The fastest permutation algorithm is
used for each tree layout.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022 xvi

Fig. A.29. Combined time to permute and query each layout on the Nvidia Quadro M4000 with N = 230 − 1 elements. The fastest permutation
algorithm is used for each tree layout.

