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ABSTRACT

We present the parallel buffer tree, a parallel external mem-
ory (PEM) data structure for batched search problems. This
data structure is a non-trivial extension of Arge’s sequential
buffer tree to a private-cache multiprocessor environment
and reduces the number of I/O operations by the number of
available processor cores compared to its sequential counter-
part, thereby taking full advantage of multicore parallelism.

The parallel buffer tree is a search tree data structure
that supports the batched parallel processing of a sequence
of N insertions, deletions, membership queries, and range
queries in the optimal O(sortp(N) + K/PB) parallel 1/O
complexity, where K is the size of the output reported in
the process and sortp(NN) is the parallel I/O complexity of
sorting N elements using P processors.

Categories and Subject Descriptors

E.1 [Data Structures|: Trees; F.1.2 [Computation by
Abstract Devices]: Modes of Computation—Parallelism
and Concurrency

General Terms
Algorithms, Theory

Keywords

Parallel external memory model, PEM model, buffer tree,
batched data structures, parallel data structures, parallel
buffer tree, parallel buffered range tree

1. INTRODUCTION

Parallel (multicore) processors have become the standard
even for desktop systems. This spawned a renewed focus on
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parallel algorithms, with a particular focus on multicore sys-
tems. The main difference between modern multicore pro-
cessors and previous models for parallel computing is the
combination of a shared memory, much like in the PRAM
model, and private caches of the cores that cannot be ac-
cessed by any other core. The cache architectures of cur-
rent multicore chips vary. Some provide a flat model where
each processor has its private cache and all processors have
access to a shared memory. Others provide a hierarchical
cache structure where intermediate cache levels are added
and subsets of processors share access to caches at these
levels.

Several models have been proposed to capture the hier-
archical memory design of modern parallel architectures to
a varying degree [6,10,11,14,22]. Private-cache models are
the simplest among them and assume a 2-level memory hi-
erarchy: a fast private cache for each processor and a slow
shared memory. While these models may not accurately rep-
resent the full memory hierarchy of most multicores, every
multicore architecture has private caches at some level of the
memory hierarchy, as well as RAM shared by all processors,
which is typically much slower. Thus, private-cache models
focus on the common denominator of multicore processors
and are useful for the development of techniques to utilize
the private caches on such processors.

In this paper, we work in one such private-cache model:
the parallel external memory (PEM) model [6,20]. The PEM
model is a natural extension of the widely accepted I/0
model [1] to multiple processors/processor cores. In this
model, the computer has P processors, each with its own
private cache of size M. Each processor can access only its
own cache. At the same time, all processors have access to
a shared memory of conceptually unlimited size. All com-
putation steps carried out by a processor have to happen
on data present in its cache. Data is transferred between
shared memory and the processors’ caches using (parallel)
1/0 operations (I/Os). In one I/O operation, each processor
can transfer one block of B consecutive data items between
its cache and shared memory. The complexity of an algo-
rithm in the PEM model is the number of such parallel I/O
operations it performs. Throughout this paper, we assume
block-level concurrent read, exclusive write access, that is,
multiple processors may read the same block of data simul-
taneously, but a block written by one processor during an
I/0 operation may not be accessed (read or written) by an-
other processor during the same I/O operation, even if the
two processors access different addresses within the block.



1.1 Our Resaults

We present the parallel buffer tree, a batched data struc-
ture that is able to process a sequence of N INSERT, DELETE,
FIND, and RANGEQUERY operations in the optimal number
of O(sortp(IN)+ K/PB) parallel I/Os, where K is the total
output size produced by all queries. This structure is an ex-
tension of the sequential buffer tree [5] to the PEM model.
The sequential buffer tree has been used as a basis for a wide
range of sequential I/O-efficient algorithms (see, for exam-
ple, Arge’s survey [4]). By extending this data structure to
the PEM model, we provide an important first step towards
enabling analogous solutions to these problems in the PEM
model.

1.2 PreviousWork

The first problems studied in the PEM model were funda-
mental problems such as sorting, scanning, and computing
prefix sums. Sorting in the PEM model takes sortp(N) =

O(P—glogM/B %) 1/Os, provided P < N/B? and M =

BOW [6,20]. Scanning a sequence of N elements and com-
puting prefix sums take O(log P4+N/PB) I/Os, which equals
O(N/PB) whenever N > Plog P. Subsequent papers in
this model studied graph algorithms [7] and some geometric
problems [2,3]. Other related papers explored the connec-
tion between cache-oblivious algorithms and private-cache
architectures and proposed general techniques for translat-
ing cache-oblivious algorithms into algorithms for private-
and mixed-cache architectures [10,11,13,14]. None of these
results immediately leads to a buffer tree for private cache
models because no cache-oblivious equivalent of the buffer
tree is known.

Sequential search structures are ubiquitous in computer
science. The B-tree [8] is widely used in database systems
for fast searching of data stored on disk. The proliferation
of parallelism particularly through multicore processors has
led to a recognition in the research community that strictly
sequential data structures quickly become a bottleneck in
applications that can otherwise benefit greatly from multi-
core parallelism, including database systems. One approach
to alleviate this bottleneck is the support of concurrency,
where multiple processors are allowed to access and manip-
ulate the data structure simultaneously. The support of con-
currency in B-trees has been investigated extensively in the
database community (for example, see [21] and references
therein). More recently, cache-oblivious concurrent B-trees
were proposed in [9].

While certainly related and motivated by the same trend
in modern computer architectures, these results do not ad-
dress the problem studied in this paper: how to process a
sequence of operations, as opposed to individual operations,
as quickly as possible. Just as the sequential buffer tree [5],
the parallel buffer tree may delay the answering of queries
but ensures that queries produce the same answer as if they
had been answered immediately. This is crucial for achieving
the I/O bound stated in Section 1.1 because processing each
query immediately requires at least one I/O per query, even
if it produces very little output. The structures discussed in
the previous paragraph and even structures designed to effi-
ciently support batched updates [19] answer queries imme-
diately and, thus, cannot achieve an optimal I/O complexity
for processing a sequence of operations.

Concurrency also provides much looser support for paral-

lel processing than explicitly parallel data structures, such
as the parallel buffer tree presented in this paper. Concur-
rency only allows multiple processors to operate simultane-
ously and independently on the data structure. In a paral-
lel data structure, on the other hand, processors cooperate
to speed up the processing of updates and queries. In the
PRAM model several search tree data structures have been
proposed [12,17,18]. However, these structures are not 1/0O-
efficient, as they makes use of random access to the shared
memory provided by the PRAM model.

2. PRIMITIVES

Two primitives we use extensively in our algorithms are
the merging of two sorted sequences and the distribution of
a sorted sequence of elements into buckets. The next two
lemmas state the complexities of these operations.

LEMMA 1. Two sorted sequences S1 and Sz can be merged
using O ([%-‘ + log P) 1/0s.

ProOOF. The algorithm is shown in Figure 1. Choosing
the subsequences S7 and S in Step 1 takes O(1) I/Os,
and merging these subsequences to obtain S’ takes O(log P)
I/0Os. Each subsequence S, 1) to be produced by a processor
in Step 2 is contained in the union of two subsequences of S1
and S bounded by consecutive elements in S7 and S5. Thus,

a single processor can produce S, 3) using O ([%_‘)

I/0s, and each processor has to produce only two such se-
quences. This leaves the issue of concatenating these se-
quences to obtain the final merged sequence S. Using a pre-
fix sum computation on the lengths of these sequences S, 1),
we can compute the position of each subsequence S, ;) in
S. This takes O(log P) I/Os. Given these positions, each
processor can write S,y to the correct blocks in S. The
only issue to be resolved is when multiple processors try to
write to the same block. in this case, at most P processors
try to write to the same block, and the portions of S to be
written to this block by different processors can be merged
using O(log P) I/0s. [

LEMMA 2. A sorted sequence of N elements can be dis-
tributed to k buckets delimited by a sorted sequence R of k—1
pivot elements using O ([55EE] + [k/P] + log P) 1/Os.

PRroOOF. The algorithm is shown in Figure 2. By Lemma 1,
the I/O complexity of the first step is O ((%-‘ + log P).
Step 2 can be accomplished by using a prefix sum computa-
tion to annotate each element of S with the index of the last
pivot that precedes it. The same prefix sum computation
can be used to count the number of elements of S between
every pair of consecutive pivot elements in the merged list
(Step 3). Using a similar technique, we can separate the
elements of S into two lists, one containing full blocks of
B elements to be sent to the same bucket, and the sec-
ond one containing one block per bucket, which stores the
remaining less than B elements to be sent to this bucket.
Step 4 distributes the blocks of the first list to the buck-
ets. Step 5 distributes the elements of the non-full blocks
to the buckets. In each step, we allocate the same number
of blocks from the respective lists to each processor. Since
there are at most k non-full blocks, the last three steps take
O((N/PB) + [k/P] + log P) I/Os. The lemma follows. [



MERGE(S1, S2):

1. Choose P evenly spaced elements from each of S1 and S2 and merge the resulting two subsequences S7 and S5 to obtain

a sequence S’.

2. Assign two pairs of consecutive elements in S’ to each processor. Each such pair (a,b) delimits a subsequence S(a,p) of
the merged sequence S = S; U S that contains all elements z € S with a < x < b. The processor that is assigned the
pair (a,b) produces the subsequence S(, ;) of the output sequence S.

Figure 1: Merging two sorted sequences S; and S:

DISTRIBUTE(SS, R):

1. Merge the sets S and {ro} U R using Lemma 1, where 1o = —o0.

Distribute full blocks of B items.

ANl ol o

Distribute the non-full blocks (at most one per bucket).

Annotate each element in S with the bucket i where it should be sent.
Compute the number of items to be sent to each bucket.

Figure 2: Distributing a sorted sequence S of N items to a set of k buckets defined by pivots R =

{"'19 e 9rk—1}

3. THE PARALLEL BUFFER TREE

In this section, we describe the basic structure of the par-
allel buffer tree and show how to support INSERT, DELETE,
and FIND operations. In Section 4, we show how to extend
the structure to support RANGEQUERY operations. The
input is a sequence of N INSERT, DELETE, and FIND op-
erations. An INSERT(z) operation inserts element z into
the buffer tree, a DELETE(z) operation removes it, and a
FIND(z) operation needs to decide whether x is in the buffer
tree at the time of the query.! All these operations may be
delayed—in particular, the answers to FIND queries may be
produced much later than the queries are asked—but the
results of all queries must be the same as if all operations
were carried out immediately. More precisely, a FIND(x)
query answers yes if and only if the last operation affecting
z and preceding this FIND(z) query in the input sequence is
an INSERT(z) operation.

We show how to process any sequence of N such opera-
tions using O(sortp(IN)) parallel I/Os. Note that we could
achieve this simply by sorting the operations in the sequence
primarily by the elements they affect and secondarily by
their positions in the sequence of operations (time stamps)
and then applying a parallel prefix sum computation to the
resulting sequence of operations. This is indeed what we do
at each node of the buffer tree. However, we use the buffer
tree to answer range queries in Section 4, a problem that
cannot be solved in this naive manner.

The parallel buffer tree is an (a,b)-tree with parameters
a = f/4 and b = f, for some branching parameter f > PB,
that is, all leaves are at the same distance from the root,
every non-root internal node has between f/4 and f chil-
dren, and the root r has between 2 and f children. Each
leaf of the tree stores O(B) elements, so the height of the
tree is O(log;(N/B)). Each non-leaf node v has an as-
sociated buffer B, of size ©(g), where g = fB, which is
stored in shared memory. We call an internal (i.e., non-
leaf) node a fringe node if its children are leaves of the
tree. As in a standard (a,b)-tree, every internal node v
with children wi,ws,...,wy stores k — 1 routing elements

! Alternatively, we could require a FIND(x) operation to re-
port information associated with x in the tree. Either of
these variants of the FIND operation are equally easy/hard
to support.

71,72,...,Tk—1, which separate the children of v: each rout-
ing element r; is no less than the elements stored in w;’s de-
scendant leaves and no greater than the elements in w;11’s
descendant leaves.

We assume the sequence of operations is provided to the
buffer tree in batches of PB operations.? Each operation is
annotated with a time stamp indicating its position in the
sequence of operations. We do not require the operations
in each batch to be sorted by their time stamps, which po-
tentially makes the parallel generation of these batches of
operations easier, but we do require that any operation in
a batch has a greater time stamp than any operation in a
preceding batch. For each batch O of PB operations, we
assign one processor to each block of B operations in O,
and the processor inserts this block into the root buffer B,.
If B, contains more than g operations, we apply the buffer
emptying procedure NONFRINGEEMPTY (Figure 3) to r, to
distribute the operations in B, to the buffers of r’s children.
For each child v whose buffer overflows as a result of receiv-
ing additional operations, we invoke NONFRINGEEMPTY (v)
recursively unless v is a fringe node. Every fringe node whose
buffer overflows is added to a list F of full fringe nodes. Once
the recursive application of the buffer emptying procedure
for non-fringe nodes finishes, we apply the buffer emptying
procedure FRINGEEMPTY (Figure 4) to the nodes in F, one
at a time. Part of the work done by this procedure is rebal-
ancing the tree to reflect the creation/destruction of leaves
as a result of the insertion/deletion of data items.

This general approach of propagating operations down the
tree in a batched fashion is identical to the approach used
in the sequential buffer tree [5]. The difference lies in the
implementation of the steps of the two buffer emptying pro-
cedures, which need to distribute the work across processors.
Next we discuss these two procedures in more detail.

3.1 Emptying Non-Fringe Buffers

The buffer emptying procedure for non-fringe internal
nodes is shown in Figure 3. The goal of Step 1 is to sort B,.
This can be done as described in the algorithm because all
but the first at most g elements in B, were inserted into B,

2We cannot control how the sequence of operations is pro-
duced by an application using the buffer tree. If the entire
sequence of operations is given up front, it is easy to divide
this sequence into batches of size PB.



NONFRINGEEMPTY (v):

1. Divide B, into two parts B, and B,. B, contains the first g elements in B,, B, the remaining elements. Sort the
elements in B, primarily by their keys and secondarily by their time stamps and merge the resulting list with B by
running MERGE(B,,, By) (Figure 1).

2. Answer and eliminate FIND queries with matching INSERT or DELETE operations in 3, and eliminate matching INSERT
and DELETE operations in B,.

3. Distribute the remaining elements in B, to the buffers of v’s children by running DISTRIBUTE(B,, R.) (Figure 2), where
R, is the set of routing elements at node v.

4. For every child w of v whose buffer B,, now contains more than g operations, invoke NONFRINGEEMPTY (w) recursively
unless w is a fringe node. If B, contains more than g elements and w is a fringe node, append w to the list F of full
fringe nodes.

Figure 3: The buffer emptying procedure for non-fringe internal nodes
FRINGEEMPTY(v):
1. Sort the operations in B,.
2. Merge the operations in B, with the elements stored in v’s children, treating each such element as an INSERT operation

with time stamp —oo. Then remove matching INSERT and DELETE operations and answer FIND queries. Finally, replace
every INSERT operation in the list without a matching DELETE operation with the element it inserts. The resulting list

is the list of elements FE, to be stored in v’s children.
3. Populate v’s children:

3.1. If g/4 < |E,| < g, store the elements of E, in f/4 < [E,/B] < f leaves and make them the new children of v.
3.2. If |E,| < g/4, store the elements of E, in [E,/B] leaves, make these leaves the new children of v, and add v to a

list U of underfull fringe nodes.

3.3. If |Ey| > g, partition E, into groups of g/2 elements. If the last group has less than g/4 elements, merge it with
the previous group to obtain a group with between ¢g/2 and 3g/4 elements. The f/2 blocks in the first group
become the new children of v. For each subsequent group, one at a time, create a new fringe node w, make the
blocks in the group w’s children, make w a sibling of v, and rebalance the tree using node splits as necessary.

Figure 4: The buffer emptying procedure for fringe nodes

by a single buffer emptying operation applied to v’s parent
and, hence, are already sorted. The elimination of matching
INSERT and DELETE operations in Step 2 takes a single prefix
sum computation on the sorted sequence of elements in B, .
We can answer a FIND(z) operation in B, without propagat-
ing it further down the tree if it is preceded by an INSERT(z)
or DELETE(x) operation in B,. In the former case, z is in
the tree at the time of the FIND(z) operation; in the latter,
it is not. This condition can be checked and the FIND(x)
operation eliminated in the same prefix sum computation
used to eliminate matching INSERT and DELETE operations.
If there is no INSERT(z) or DELETE(z) operation in B, pre-
ceding the FIND(x) operation, the FIND(z) operation needs
to be propagated to the appropriate child.

LEMMA 3. Emptying the buffer B, of a non-fringe inter-
nal node and placing these operations into the buffers of v’s
children takes O([X/g]-sortp(g)) I/Os, where X is the num-
ber of operations in B,.

PRrOOF. It takes O(sortp(g)) I/Os to sort the first g ele-
ments in B,. By Lemmas 1 and 2 and because f = g/B <
X/B, the remainder of the procedure takes O(X/PB +
log P) = O([X/g] - sortp(g)) I/Os. O

3.2 Emptying Fringe Buffers

After recursively emptying the buffers of non-fringe inter-
nal nodes as discussed in Section 3.1, we now process the full
fringe nodes in F one at a time. For each such node v, it is
guaranteed that the buffers of its ancestors in the tree are
empty, a fact we use when performing node splits or fusions
to rebalance the tree.

To empty the buffer of a fringe node v, we invoke the
buffer emptying procedure in Figure 4. As in the sequential
buffer tree, we first compute the set of elements to be stored
in v’s children. If this requires fewer or more children than
the node currently has, we add or remove children. When
adding leaves makes it necessary to rebalance the tree, we do
so immediately. When deleting leaves decreases the degree
of a fringe node v to less than f/4, on the other hand, we
add v to a list U of underful fringe nodes to be rebalanced
after the buffers of all fringe nodes in F have been emptied.
The main difference to the sequential buffer tree is that we
cannot perform these leaf additions/deletions one leaf at a
time.

The sorting of B, in Step 1 and the merging of B, with
the elements in v’s children in Step 2 can be implemented as
when emptying the buffer of a non-fringe node. In Step 3,
making the blocks in a partition of E, the children of v or
of a new fringe node w requires the construction of a list of
pointers to these nodes to be stored with v or w. This can be
done using a prefix sum computation on the elements in each
such group of blocks and thus takes O(g/(PB) + log P) =
O(sortp(g)) I/Os. Every node split necessary to rebalance
the tree can be implemented using O(sortp(g)) I/Os in a
similar fashion.

Once we have applied procedure FRINGEEMPTY to all
nodes in F, we process the underfull fringe nodes in U, i.e.,
nodes that have fewer than f/4 children. For each such
node v, we traverse the path from v to the root and perform
node fusions until we reach a node that is no longer under-
full. For a node w to be fused with a sibling, we first empty
the buffers of its two immediate siblings. If this triggers re-
cursive buffer emptying steps and adds new overfull fringe



nodes to F, we first process these nodes before continuing
the processing of w. Then we choose an immediate sibling
w’ of w and replace w and w’ with a single node that has the
children of w and w’ as its children. If this new node now has
more than f children, we split it into two nodes again. Sim-
ilarly to node splits, a node fusion takes O(sortp(g)) I/Os,
as it involves emptying two buffers with less than g elements
in them and concatenating the O(f) routing elements and
child pointers of two nodes. (Note that if emptying the sib-
lings’ buffers triggers recursive buffer emptying operations,
this is the result of these buffers overflowing and thus can
be charged to the elements in these buffers that are pushed
one level down the tree.)

THEOREM 1. The parallel buffer tree can process a se-
quence of N INSERT, DELETE, and FIND operations using
O(sortp(N)) parallel I/Os.

Proor. By Lemma 3, emptying each non-fringe buffer
containing X > g elements takes O((X/g) - sortp(g)) I/Os.
A similar analysis proves the same bound for emptying a
fringe buffer. Since each element is involved in one such
buffer emptying procedure per level and the height of the
tree is O(log;(N/B)), the total cost of emptying buffers is
O((N/g) - sortp(g) - log,;(N/B)) = O(sortp(N)) 1/Os.

Since every new fringe node we create has at least g/2
and at most 3¢g/4 elements in its children, and we split/fuse
such a node only when its children store more than g or
less than g/4 elements, the total number of fringe nodes we
create/destroy during a sequence of N updates is O(N/g).
Using the analysis of (a, b)-trees from [15], this implies that
the total number of node splits/fusions is O(N/g). Since
each such rebalancing operation costs O(sortp(g)) I/Os, the
total rebalancing cost is also O(sortp(N)) I/Os.

Finally, after inserting the last batch of operations into
the root buffer, some operations may remain in buffers of
internal nodes without being pushed down the tree because
the buffers containing them have not overflowed. We force
a buffer emptying procedure on each node of the tree in a
top-down fashion. This causes at most one buffer emptying
operation per node that cannot be charged to an overflow-
ing buffer and hence to the elements in the buffer. Since
there are O(IN/g) internal nodes in the tree, the cost of these
forced buffer emptying operations is also O(sortp(N)). [

4. SUPPORTING RANGE QUERIES

In this section, we show how to support range queries on
the parallel buffer tree. Each such RANGEQUERY(z1, z2)
operation is represented by its query range [z1, 2] and is to
report all elements that have been inserted before the time
of the query, fall within the query range [z1,x2], and have
not been deleted before the time of the query. As in [5],
we assume the sequence of operations to be applied to the
buffer tree is well-formed in the sense that every INSERT
operation inserts an element that is mot in the buffer tree
at the time of the operation, and every DELETE operation
deletes an element that is in the buffer tree at the time of
the operation.

To answer range queries, we again follow the framework of
the sequential buffer tree [5], modifying the buffer emptying
processes for internal nodes to utilize all available processors.
As in [5], the output of each query may be reported in parts,
during different buffer emptying operations. In other words,
the result of processing a sequence of INSERT, DELETE, and

RANGEQUERY operations is an unordered sequence of query-
element pairs (¢, x), where x is part of the output of query
q as defined at the beginning of this section.

We associate a range R, with every node v in the buffer
tree. For the root r, we define R, := (—o0,400). For each
child w; of a node v with range R, = [z1, x2], with children
w1, W2, ..., Wk, and with routing elements ri,7r2,..., 7K1,
we define Ry, = [ri—1,r:], where ro := z1 and 75 := x2.
When emptying the buffer B, of a node v with children
w1, w2, ..., wk, we consider all range queries [z1,x2] in B,
and all children w; of v such that Ry, C [z1,z2]. We output
the elements in each such node w;’s subtree that are alive
at the time of the query and then forward the query to the
buffers of the two children wy, and w; such that 1 € R,
and x2 € ij. One of the endpoints of the query may be
outside the range R,, in which case only one of the nodes
wy, and w; exists.

4.1 Time Order Representation

To support range queries, the sequential buffer tree in-
troduced a time order representation of a sequence S’ of
INSERT, DELETE, and RANGEQUERY operations. We em-
ploy the same representation here. In this representation, all
DELETE operations are “older” (have an earlier time stamp)
than all RANGEQUERY operations, which in turn are older
than all INSERT operations. The elements in each of these
three groups are ordered by their keys (by their left end-
points in the case of RANGEQUERY operations). The main
property of this representation is that the RANGEQUERY
operations in S’ cannot report any elements affected by IN-
SERT or DELETE operations in S’, which follows from the
well-formedness of the sequence of operations given to the
buffer tree. In general, of course, the input sequence S of
the buffer tree is not in time order representation—otherwise
range queries would never produce any output. The central
operation needed to support range queries on the buffer tree
is to transform various subsequences of S into time order
representation and report matching query-element pairs in
the process. A single sorting step suffices to bring the ele-
ments in such a subsequence S’ into time order representa-
tion. To report the necessary query-element pairs, the se-
quential buffer tree implements this sorting step using pair-
wise element swaps, employing the following rules to report
matching query-element pairs and eliminate matching pairs
of INSERT and DELETE operations. Let 01 and o2 be two
adjacent operations in S’ to be swapped, with o1 preceding
02.

e If 01 is an INSERT operation and o2 is a DELETE op-
eration affecting the same element, all range queries
precede the insertion or succeed the deletion. Thus,
01 and o2 can be discarded.

e If 0, is an INSERT(z) operation and o2 is a RANGE-
QUERY (1, z2) operation with = € [z1,z2], then the
deletion of = succeeds the range query. Thus, we re-
port x as part of the query’s output and then swap the
two operations.

e If 0; is a RANGEQUERY(z1, z2) operation and o2 is a
DELETE(z) operation with € [z1, 2], then the inser-
tion of x precedes the range query. Thus, we report x
as part of the query’s output and then swap the two
operations.



e Any other pair of operations 01 and o2 is swapped with-
out any special action being taken.

This construction of a time order representation is inherently
sequential. Our first step towards supporting range queries
on a parallel buffer tree is to show how to construct a time
order representation efficiently in parallel.

LEMMA 4. Provided g > PB?log? P, a sequence of g op-
erations can be brought into time order representation using
O(sortp(g) + K'/PB) I/Os and O(g+ K') space, while also
reporting all K' elements that need to be reported according
to the swapping rules just discussed.

PROOF. As already discussed, once all pairs of matching
INSERT and DELETE operations have been eliminated, a sin-
gle sorting step suffices to transform the sequence into time
order representation. This takes O(sortp(g)) I/Os. Thus, it
suffices to discuss how to eliminate these matching pairs of
INSERT and DELETE operations and how to report matching
query-element pairs before sorting the sequence.

To do the latter, we use the connection between range
queries and orthogonal line segment intersection. We map
every range query g with query interval [z1,z2] and time
stamp ¢ to the horizontal segment with endpoints (z1,t)
and (z2,t). Similarly, we map every element z inserted at
time t1 and deleted at time t2 to the vertical segment with
endpoints (x,t1) and (z,t2). Element z is to be reported
by query q if and only if the two segments intersect. Thus,
to report all matching query-element pairs in the current
sequence, we construct this set of horizontal and vertical
segments and apply the PEM orthogonal line segment in-
tersection algorithm of [3] to report their intersections using
O(sortp(g) + K'/PB) 1/Os and O(g + K') space, where
K’ is the number of intersections found. Constructing the
horizontal segments corresponding to range queries is triv-
ial. To construct the vertical segments corresponding to
input elements, we sort the operations so that range queries
succeed insertions and deletions and so that insertions and
deletions are sorted primarily by the elements they affect
and secondarily by their time stamps. Let S be the result-
ing sequence. Then we turn every matching pair of con-
secutive INSERT and DELETE operations into a vertical seg-
ment. Every DELETE(x) operation at time ¢ not preceded
by an INSERT(x) operation is represented as a segment with
top endpoint (z,¢) and bottom endpoint (z, —oc0). Every
INSERT(z) operation at time ¢ not succeeded by a DELETE(x)
operation is represented as a segment with bottom endpoint
(z,t) and top endpoint (x,+0o0). We apply a parallel pre-
fix sum computation to S to eliminate matching INSERT and
DELETE operations immediately prior to sorting the remain-
ing operations in time order. [

LEMMA 5. Let S1 and Sz be two operation sequences in
time order representation, with all elements in Sz older than
all elements in S1. The time order representation of S1U S

can be constructed using O(W - sortp(g) + K/PB)

1/0s and O(g+K) space, where K is the number of elements
reported in the process.

PrOOF. We “merge” S1 and Sz using the algorithm in
Figure 5. The correctness proof of this procedure is straight-
forward and therefore omitted. By Lemma 1, Steps 1 and 4

take O (% + log P) =0 (W ~sortp(g)) I/Os.

Step 3 is identical to Step 2. Thus, it suffices to analyze
Step 2. The total cost of splitting list L in Step 2.2.1 is
O((N + K)/PB) 1/Os because every element in L either
becomes part of L' or of L”. In the former case, it adds
at least one element to the output. In the latter case, this
is the last iteration it is part of L. Every invocation of
the line segment intersection algorithm on 2g elements in
Step 2.2.2 can be charged either to g queries in L” or to
the g deletions in D’. Hence, the total cost of Step 2.2.2 is

O (W -sortp(g) + K/PB) I/0s. In Step 2.2.3, we re-

port at least one query-element pair per deletion in D’. Since
D’ contains g > PB deletions unless this is the last batch, it
is trivial to report the query-element pairs in this step using
O(K/PB)1/Os. Every iteration of Step 2.2.4 except the last
can be charged to g queries retrieved from Q2. Hence, the to-

tal cost of this step is also O (W -sortp(g) + K/PB)
I/0s. O

LEMMA 6. Let T be a buffered range tree with N/B leaves
and each of whose buffers stores at most g elements. Emp-
tying all buffers of T and collecting their operations in time

order representation takes O(sortp(g) Yowerhe + (N +

K)/PB) 1/0s, where the sum is over all operations x in

buffers in T, hg is the distance of the buffer storing opera-
tion x from the leaf level, and K is the number of elements
reported in the process.

PrOOF. The algorithm is almost the same as for the se-
quential buffer tree, except that we use Lemmas 1, 4, and 5
to implement its basic steps efficiently in parallel.

First we collect the buffer contents of the nodes on each
level in a single sequence. This takes O(N/PB) I/Os. Since
each buffer contains at most g operations, we can divide
the sequence representing each level into subsequences of
O(g) elements such that each buffer content is contained
in such a subsequence. By Lemma 4, we can transform
all of these subsequences into time order representation us-
ing O((X/g)sortp(g) + K/PB) 1/Os, where X is the total
number of operations in 7’s buffers. Next we merge the
deletion, range query, and insertion sequences of the time
order representations at each level to obtain a single time
order representation of all operations at this level. This
takes O(X/(PB) + log P) = O((X/g)sortp(g)) I/Os. Let
S1,852,...,Sk be the resulting time order sequences of all
levels, sorted from the fringe nodes to the root. The opera-
tions in S;11 are younger than the operations in .S;, for all
1 <4 < k. Thus, we can apply Lemma 5 to merge S;11 into
Si, for i = k— 1,k —2,...,1. Each such merge step has

cost O(W -sortp(g) + K’/PB) I/0s, where K’ is
the size of the output it produces. Since each operation in

a sequence S; participates in ¢ such merge steps, the lemma
follows. [

4.2 Emptying Buffers

The buffer emptying process is similar to the one in the
sequential buffer tree. The main difference is that we use the
results from Section 4.1 to construct time order representa-
tions as needed and that we need to ensure the reporting
of output elements during each buffer emptying process is
distributed evenly across processors. As in Section 3, the
buffer emptying processes for non-fringe and fringe nodes
differ. These procedures are shown in Figures 6 and 7.



TIMEORDERMERGE(S1, S2):

1. Merge the subsequences D and I» of deletions in S; and insertions in S2 using Lemma 1, delete matching INSERT and
DELETE operations, and arrange the remaining insertions and deletions in time order DjI5 using a parallel scan of the
merged list to split it into two output streams D7 and I5.

2. Swap the sequences D; and Q2 and report all pairs ([z1, z2], *) such that Q2 contains a range query with interval [z1, z2]
and D] contains a DELETE(x) operation with = € [x1, z2]. The swapping of D] and Qs is easily achieved using a parallel
scan. We report the query answers as follows:

2.1. Create a list L of “long” queries. Initially, this list is empty.

2.2. Divide D} into batches of g deletions. For each batch D', do the following:

2.2.1. Using a parallel scan of L, divide L into two lists L' and L” such that all queries in L’ have their right

endpoints to the right of the last element in D’ and the queries in L do not.
Divide L into batches of size g and, for each batch, report the queries in the batch containing each
element in D’ using orthogonal line segment intersection as in Lemma 4. After processing all elements
in L” in this fashion, discard L”.
Every query in L’ contains all elements in D’. Distribute the elements in D’ evenly across processors.
Then let each processor report the query-element pairs defined by its assigned deletions and the queries
in L'. After processing L’ in this fashion, set L := L’.
While the next element in Q2 has a left boundary no greater than the rightmost deletion in D’, read the
next batch Q' of queries from (2. Run the line segment intersection algorithm on D’ and @’ to report
all matches between queries in ' and deletions in D’. Then apply a parallel scan to @’ to identify all
queries whose right endpoints are to the right of the rightmost deletion in D’. Append these queries

2.2.2.

2.2.3.

2.2.4.

to L.

3. Swap the sequences I3 and Q2 and report all pairs ([z1,x2],x) such that Q1 contains a range query with interval [z1, 7o)
and I3 contains an INSERT(z) operation with = € [z1,z2]. This is analogous to Step 2.
4. Merge D] with D, Q1 with Q2, and I; with I5 using Lemma 1.

t I L — L — L — >
S Q1 — Q1 — Q17><I£7
I A Y
I Dy — Q2 — Q2 —
Sy Q2 Q2 — Dy — Dl17>D
D, Dy — Dy — Dy —
Step 1 Step 2 Step 3 Step 4

Figure 5: Merging two sequences S1 = D1Q1I1 and S2 = D2Q21> in time order representation

To empty the buffer B, of a non-fringe node v, we first
compute its time order representation (Step 1) and distribute
the DELETE operations in the resulting sequence to the chil-
dren of v (Step 2). Then we inspect the range queries in B,
and identify all children w; of v that are spanned by at least
one range query in B, (Step 3). We do this by merging the
set of range queries in B, with the set of children of v, each
represented by its range R, . In the resulting list, the range
queries and children of v are sorted by the left endpoints of
their ranges. A prefix sum computation now suffices to label
each child w; of v with the rightmost right boundary of any
range query preceding R, in the merged list. B, contains
a range query spanning w; if and only if this rightmost right
boundary is to the right of the right boundary of R.,. An
analogous procedure allows us to mark every range query in
B, that spans at least one child of v, and a prefix sum over
the list of range queries followed by a parallel scan suffices
to extract the subset Q' of all marked queries.

In Step 4, we compute the lists of elements to be reported
from the subtrees of all marked children of v and answer
range queries pending in each such subtree 7,,. The cor-
rectness of this procedure is not difficult to see. The reason

for first excluding the set of deletions just sent to such a
child w; in Step 4.1 and then, in Step 4.3, merging them
with the time order representation constructed in Step 4.2
is that Lemma 6 requires that each buffer in 7., contains
at most g operations. Similar to Section 3, we postpone the
emptying of fringe buffers in 7., because emptying these
buffers might trigger rebalancing operations that could in-
terfere with buffer emptying procedures still pending at non-
fringe nodes. A difference to Section 3 is that we sched-
ule even non-full fringe buffers of 7., to be emptied once
we are done emptying non-fringe buffers (Step 4.8) if these
buffers contain more than ¢g/16 operations or the leaves be-
low the corresponding nodes store fewer than g/8 elements
after Step 4.5. This is necessary to ensure that we can charge
the cost of merging L.,; with the contents of the leaves of Ty,
to elements deleted from 7., or reported by range queries
in B, that span Ru,.

In Step 5, we report all the elements in subtrees spanned
by range queries in B,, for all queries spanning these sub-
trees. The key in this step is to balance the work of report-
ing output elements among the processors. We process the
queries spanning the ranges of children of v in batches of g



RANGENONFRINGEEMPTY(v):

.,w;j of children of v such that R, C
,qw; of q. Let wt(qw,;) = |Lw,| be the weight of g, for

1. Compute the time order representation S = DQI of B,. The first g operations can be brought into time order represen-
tation using Lemma 4. The remaining operations are already in time order representation because they were added to
B, during a single buffer emptying process at v’s parent. Thus, they can be merged with the time order representation
of the first g operations using Lemma 5.

2. Distribute the DELETE operations in D to the buffers of the relevant children of v using Lemma 2.

3. Mark all children of v that are spanned by at least one range query in @ and compute the subset Q' C @ of range queries
that span at least one child of v.

4. For each marked child w; of v, do the following, where 7T, denotes the subtree with root w;:

4.1. Set aside the set D.,; C D of all DELETE operations distributed to B, in Step 2.

4.2. Using Lemma 6, empty all buffers of internal nodes of 7., and compute a time order representation L., of the
operations in these buffers.

4.3. Merge the deletions in D, into L., using Lemma 5.

4.4. Distribute copies of the operations in L., to the buffers of the fringe nodes of 7., according to the routing
elements stored in 7.,. (Range queries are sent to the leaves containing their endpoints.) This can be done using
Lemma 1 by merging L.,, with the sequence of routing elements of the fringe nodes after creating copies of the
RANGEQUERY operations, sorting these copies by their right endpoints, and merging them into L.,.

4.5. Mark all fringe nodes spanned by at least one range query in L., and construct the list Q;,, of all range queries
in L., that span at least one fringe node. This can be done similarly to Step 3. For each marked fringe node w,
apply the deletions in its buffer B, to the leaves below it and remove the deletions from 5,. Now answer the
range queries in Qﬁui in a manner similar to Step 5 below.

4.6. Remove all RANGEQUERY operations from L.,. Merge the list of elements stored in the leaves of Ty, into L.,
using Lemma 1 and eliminate matching INSERT and DELETE operations using a prefix sum computation.

4.7. Store the value of | L., | with node v.

4.8. Add each fringe node of 7., whose buffer contains at least ¢g/16 operations or whose leaves store less than g/8
elements to the list F of fringe nodes to be emptied after we are done emptying non-fringe nodes.

5. Divide @’ into batches of ¢ RANGEQUERY operations. For each such batch Q”, do the following:

5.1. For each range query ¢ = [z1,72] € Q", determine the range wp, w41, - -

[x1, z2], for all h <4 < j, and create copies quw,, , Guj, ;- -
all h < i <j.

5.2. For each query gu, € Q", report the elements in L., . Distribute the load of reporting the output of all queries
evenly among the processors.

6. Distribute all range queries in @ to the children of v so that each query ¢ = [z1,22] € Q is sent to children w;, and w;
satisfying 1 € Ruw, and z2 € Ru;, if these children exist. When sending query [z1,z2] to a child w;, replace the query
range with [z1, 2] N R, .

7. Distribute the insertions in I to the buffers of the appropriate children of v. For each marked child w;, distribute the
operations sent to w; in Steps 6 and 7 to the fringe buffers of 7,,. This can be done in a way similar to Step 4.4.

8.

If the buffer of any child node w; is now full, and w; is not a fringe node, recursively empty w;’s buffer. If w;’s buffer is
full and w; is a fringe node, add w; to the list F of fringe nodes to be emptied after we are done emptying non-fringe
nodes.

Figure 6: Emptying the buffer of a non-fringe node of the parallel buffered range tree

queries. For each batch Q" and each query q € Q”, we first
create a separate copy ¢, of g for each subtree 7., such
that ¢ spans R.,, (Step 5.1). We do this as follows: A single
prefix sum computation similar to Step 3 suffices to label
every query in Q" with the leftmost child of v it spans. We
sort the queries in Q" by their right endpoints and repeat
this procedure to label each query with the rightmost child
of v it spans. Then we return the queries to their original
order. Using a prefix sum computation, we can count the
total number of copies of queries in Q" to be created. Next
we distribute the creation of these copies evenly among the
processors: If C' is the total number of copies to be cre-
ated, we use a parallel scan to divide " into two subse-
quences, those queries with no more than C'/P copies to be
created and those with more than C'/P copies to be created.
Using a prefix sum computation, we partition the first se-
quence of queries into P subsequences, one per processor, so
that no processor has to create a total of more than 2C/P
copies. Each processor then produces the copies of its as-
signed queries. Using a second prefix sum computation, we

assign processors to each query in the second sequence so
that each query ¢ with Cy > C/P copies to be created is
assigned at least [PC,/C"] processors and each processor is
assigned to at most two queries. We divide the creation of
copies of each such query evenly among its assigned pro-
cessors, which ensures that no processor creates more than
2C/P copies. The load balancing in Step 5.2 is achieved
analogously, based on the weights assigned to the copies of
the queries. Steps 6—8 are analogous to the buffer emptying
process for non-fringe nodes in Section 3.

After we have emptied the buffers of all full non-fringe
nodes, we need to empty the buffers of all fringe nodes in F.
When emptying the buffer of a fringe node v (Figure 7),
the merging of the buffer B, with the elements in the leaves
below v answers all range queries in B,. Thus, after the
merge, we can remove the RANGEQUERY operations from
B, and construct the new leaf contents from the current leaf
contents and the INSERT and DELETE operations remaining
in the fringe buffer, followed by rebalancing the tree as in
Section 3.



RANGEFRINGEEMPTY(v):

1. Construct the time order representation of B, as in Step 1 of Figure 6.
2. Merge the elements in the children of v into B, using Lemma 5.

3. Remove all range queries from B,.

4. Empty the buffer B, (and rebalance the tree) using algorithm FRINGEEMPTY in Figure 4.

Figure 7: Emptying the buffer of a fringe node of the parallel buffered range tree

THEOREM 2. The total cost of an arbitrary sequence of N
INSERT, DELETE, and RANGEQUERY operations performed
on an nitially empty range tree is O(sortp(N) + K/PB)
1/0s, where K is the number of reported elements. The
data structure uses O(N + K) space.

PROOF. The correctness of the algorithm is easy to see
because all range queries are answered correctly during the
construction of the appropriate time order representations
(Lemmas 4 and 5) and by reporting the elements in sub-
trees completely spanned by these queries (Steps 4 and 5 of
Figure 6).

To prove the I/O bound, we assign @(% logar/ N/B) =
O(H5 - log, 5 N/B -log,, 5 g/ B) credits to each operation
when inserting it into the root buffer of the buffer tree and
maintain the invariant that each element in the buffer B,
of a node v that is the root of a subtree of height h has
SIS ‘logyr, 5 9/ B) credits remaining. We show that we can
use these credits plus O(1/P B) credits per output element to
pay for the cost of all buffer emptying operations, excluding
the cost of rebalancing operations triggered by the emptying
of fringe buffers. Since the rebalancing cost is the same as in
the basic parallel buffer tree discussed in Section 3, and the
proof of Theorem 1 bounds this cost by O(sortp(N)) I/Os,
the I/O bound follows.

Consider the emptying of a non-fringe buffer B,. The cost
of Steps 1, 2, 3, 6, and 7 is O((|By|/g)sortr(g) + K'/PB)
I/Os, where K’ is the number of output elements produced
by these steps. For Steps 1, 2, 6, and 7, this follows from
Lemmas 2, 4, and 5. For Step 3, this follows because this
step involves only merging two sequences of total size O(|B,|)
(Lemma 1), followed by a prefix sum and parallel scan of the
merged list. Since all operations in B, are either eliminated
or moved to v’s children, the credits of these operations and
the produced output elements can pay for the cost of these
steps.

In Step 4, consider a single subtree T.,, with N'/B leaves.

By Lemma 6, Step 4.2 takes O (sortp(g) Zzeva hs + (N’ +

K’)/PB) I/Os, where K’ is the number of elements re-

ported in this step. Steps 4.1 and 4.3 take O((X/g)sortp(g)+
K’'/PB) 1/0s, where X is the total number of operations
in Tw,’s buffers and K’ is again the number of elements re-
ported by this step. Step 4.4 takes O(N'/PB+log P) I/Os,

by Lemma 1. Step 4.5 takes O (N/+K/ + log P) I/0s, by

PB
the same analysis as for Steps 3 and 5 (below). Steps 4.6—

4.8, finally, take O (% + log P) 1/0s, by Lemma 1. The

O(K'/PB) terms can be paid for by the reported elements.
The remaining cost is dominated by the cost of Step 4.2.

The O (sortp (@) weT,
credits of the operations in 7.,;’s buffers because these oper-
ations are moved to fringe buffers. The O(N’/(PB)) term
can be paid for by the elements in the leaves of 7., because

hx) term can be paid for by the

a constant fraction of these elements either get deleted or
become part of the output of at least one range query in B,
that spans R, .

The cost of Step 5 is bounded by O(f/P + K'/(PB)) =

’
O (%) I/Os because we ensure that each processor cre-

ates roughly the same number of copies of queries and re-
ports roughly the same number of output elements, and the
number of copies of queries we create is O(K’) because we
only copy queries that span the ranges of children of v.

The analysis of the cost of emptying fringe buffers is anal-
ogous once we observe that each such buffer emptying op-
eration can be charged to 2(g) operations: either the emp-
tied buffer contains at least g/16 operations or the leaves
below the corresponding node must have lost at least 3¢g/8
elements since their creation, which can only happen as a
result of DELETE operations.

The space bound follows because all steps in our algo-
rithms use linear space. The only exception is the orthogo-
nal line segment intersection algorithm of [3], which requires
O(N + K) space in order to achieve the optimal I/O com-
plexity. [
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