ICS 691: Parallel Algorithms
Homework 1

Due: October 2, 2014

Instructions: You may discuss the problems with other students in the class,
but you must write up the solutions on your own and list the names of the
students with whom you discussed each problem.

1 Recurrences (10 pts)

Solve the following recurrence for T'(N, N):

_ [T3, N)+0e() ifn> Ny
T(n, N) = { o(1) otherwise

Your solution should be better than T'(N, N) = O(log N).

2 Prefix minima (20 pts)

Given an array A = [a1,as,...,a,], design a parallel algorithm that computes
an array B = [b1,ba, ..., b,] such that each element b; = min(as, as, ..., a;), i.e.
is the minimum among the first ¢ elements of A. Your algorithm should run
in O(logn) time and O(n) work. Write down the pseudocode and prove the
correctness, time and work complexities of your algorithm.

3 In-place Partition (30 pts)

Given an array A of elements and a bit vector B, the problem of in-place par-
titioning of A asks to rearrange elements of A, such that all elements a; € A
with corresponding bit vector values B[i] = 0 are placed in A before all elements
a; € A with corresponding bit vector values B[j] = 1.

(a) (15 pts) Design a parallel algorithm that solves the in-place partitioning
problem. Write out the pseudocode for your algorithm. Your solution
should exhibit the same time and work complexity as the prefix sums algo-
rithm.

(b)

(15 pts) Design a parallel algorithm that solves the segmented version of the
in-place partitioning problem. That is, there is another bit vector C', that
defines boundaries of segments within A and in-place partitioning must
be performed within each segment. Write out the pseudocode for your
algorithm. Your solution should exhibit the same time and work complexity
as the segmented prefix sums algorithm.

Segmented prefix sums (40 pts)

(15 pts) Write out the pseudo code for segmented prefix sums WITHOUT
the reduction to the associative operator e described in class.

(15 pts) Write out the pseudo code for segmented prefix sums using the
reduction to the associative operator e described in class.

(10 pts) Compare the two algorithms. Discuss in what ways they are similar
and in what ways they differ. Which one was simpler to design?

