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Abstract. When lexicographically sorting strings, it is not always nec-
essary to inspect all symbols. For example, the lexicographical rank of
europar amongst the strings eureka, eurasia, and excells only depends
on its so called relevant prefix euro. The distinguishing prefix size D of a
set of strings is the number of symbols that actually need to be inspected
to establish the lexicographical ordering of all strings. Efficient string
sorters should be D-aware, i.e. their complexity should depend on D
rather than on the total number N of all symbols in all strings. While
there are many D-aware sorters in the sequential setting, there appear
to be no such results in the PRAM model. We propose a framework
yielding a D-aware modification of any existing PRAM string sorter.
The derived algorithms are work-optimal with respect to their original
counterpart: If the original algorithm requires O(w(N)) work, the derived
one requires O(w(D)) work. The execution time increases only by a small
factor that is logarithmic in the length of the longest relevant prefix. Our
framework universally works for deterministic and randomized algorithms
in all variations of the PRAM model, such that future improvements in
(D-unaware) parallel string sorting will directly result in improvements
in D-aware parallel string sorting.

Keywords: String sorting · lexicographical sorting · parallel · PRAM
· distinguishing prefix · longest common prefix · LCP · Karp-Rabin
fingerprints

1 Introduction

The problem of string sorting is defined as follows: Given k strings s1, . . . , sk
of total length N =

∑
|si| stored in RAM, and an array S of k pointers to the

strings (S[i] points to the memory location of si), compute a permutation S′

of S such that S′ lists the strings in lexicographical order (S′[i] points to the
lexicographically i-th smallest string). It is commonly known that establishing
the lexicographical order on the strings does not necessarily require inspecting
all N symbols. In fact, the rank of a string si only depends on its shortest
prefix si[1..`i] that is not a prefix of any another string. The distinguishing prefix
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size of the k strings is defined as D =
∑k

i=1 `i. In simple words, an algorithm
that sorts the strings only needs to inspect the D symbols that are part of the
distinguishing prefix, while all other symbols are irrelevant for the lexicographical
ordering. In this paper, we present parallel D-aware string sorting solutions.
That is, the time and work complexity of the algorithms depends only on k, D,
and possibly σ, but not on N . We present algorithms in the PRAM model and
consider the following variations of the model (ordered from the weakest to the
strongest): EREW, CREW, Common-CRCW, and Arbitrary-CRCW. Observe
that algorithms designed for the weaker models can run on the stronger models
within the same complexity measures.

1.1 Related Work

There is a variety of algorithms that aim to efficiently solve the problem of string
sorting, most of which belong to one of two classes: The ones that are based on
comparison sorting and generally allow arbitrary alphabets, and the ones that use
(ideas from) integer sorting and are usually limited to alphabets of polynomial
size σ = NO(1).

If comparison sorting is the underlying technique, the well-known information-
theoretical lower bound of Ω(k lg k) comparisons applies, such that the fastest
possible sequential algorithm cannot take fewer than Ω(k lg k +D) operations.
Ternary quicksort [2] runs in O(k lg k +D) time, and thus matches this lower
bound. In the Common-CRCW model, JáJá et al. [14] achieve O(k lg k +N) work
and O(lg2 k/ lg lg k) time, and also provide a randomized algorithm that requires
the same amount of work and O(lg k) time with high probability. However, a
D-aware modification of the algorithm cannot easily be derived.

In terms of alphabet-dependent sequential algorithms, we can use radix-sort-
like approaches to achieve either O(N + σ) time [1, Alg. 3.2], or even O(D + σ)
time [16], where σ is the number of different characters. Hagerup [11] presents an
Arbitrary-CRCW algorithm that achieves O(N lg lgN) work and O(lgN/ lg lgN)
time, assuming that the alphabet is polynomial in N . Alternatively, it can be
implemented to run in O(N

√
lgN) work and O(lg3/2N

√
lg lgN) time in the

CREW model, or O(N
√

lgN lg lgN) work and the same time in the EREW
model. Note that Hagerup’s algorithm is based on an algorithm by Vaidyanathan
et al. [17] that reduces each string to a single integer by repeatedly merging
adjacent symbols. Due to the nature of the reduction technique, it always inspects
all N symbols, and a D-aware modification cannot easily be derived.

There are practical parallel algorithms that exploit the distinguishing prefix
and are fast in practice [4–6]; however, we are not aware of any algorithms with
D-aware complexity bounds in the PRAM model.

1.2 Our Contributions

We present a theoretical framework that yields a D-aware version of any existing
string sorting algorithm. Particularly, we derive D-aware versions of the algo-
rithms by JáJá et al. and Hagerup that are work optimal with respect to their
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original counterparts: If the original algorithm requires w(k,N, σ) work, then
our modification requires O(w(k,D, σ)) work. Additionally, in case of Hagerup’s
algorithm, we are no longer limited to polynomial alphabets. Generally, the
new algorithms are only by a (lg d)-factor slower than the original ones, where
d = max{`i | 1 ≤ i ≤ k} denotes the length of the longest relevant prefix.

Our framework is based on the idea of approximating the distinguishing
prefix. It yields a 2-approximation of the relevant prefix lengths: For each string
si, we determine a value L[i] ∈ [`i, 2`i). In the Arbitrary-CRCW model, this
takes expected optimal O(D) work and O(lg d · (lg d+ lg k)) time with high
probability. In the weaker EREW model, we achieve O(k

√
lg k lg lg k +D) work

and O(lg d · (lg d+ lg k) + lg3/2 k · lg lg k) time with high probability. An overview
of our results is provided in Table 1.

The rest of the paper is structured as follows: In Section 2 we introduce the
basic notation and definitions regarding the PRAM model and string processing.
In Section 3 we explain our approximation scheme for the distinguishing prefix,
which we use in Section 4 to derive deterministic D-aware string sorters. By
using Karp-Rabin fingerprinting, we can also derive randomized string sorters,
and achieve better complexity bounds for our approximation scheme (Section 5).
We summarize our results in Section 6.

2 Preliminaries

Throughout this paper, we write lg x to denote the binary logarithm log2 x, and
[x, y] to denote the discrete interval {x, x+ 1, . . . , y}. Our research is situated in
the PRAM model of computation, where multiple processors work on a shared
memory. In each processing cycle, each processor may read from a memory
cell, write to a memory cell, or perform a simple local operation (logical shifts,
basic arithmetic operations etc). We consider the following variations of the
PRAM model: EREW (each memory location can be read and written by at
most one processor in each time step), CREW (each memory location can be
read by multiple processors in each time step, and written by a single processor
in each time step), and CRCW (each memory location can be read and written
by multiple processors in each time step). For the CRCW model, we consider
two variants: In the Common-CRCW model, multiple processors are allowed to
write to the same memory location in the same time step only if all of them
write the same value. In the Arbitrary-CRCW model, multiple processors are
allowed to write different values to the same memory location in the same time
step, and an arbitrary processor succeeds. However, the designer of an algorithm
for this model may not make any assumptions as to which one it is. The time
required by a PRAM algorithm is the total number of processing cycles. The
work of a PRAM algorithm is defined as the total number of primitive operations
that are performed by all processors, or (equivalently) as the running time of
the algorithm when using only a single processor. One of the most fundamental
operations in the PRAM model is the all-prefix-operation, and its specialization,
the all-prefix-sums-operation:
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Table 1. New results on D-aware parallel string sorting. The original (D-unaware)
results are written in gray. Whenever the model is annotated with w.h.p., the respective
algorithms are successful with high probability 1 − O(k−c) for an arbitrarily large
constant c. We write Ô(x) to denote expected complexity bounds.

a.) Results based on the sorter by Hagerup [11]:

Model Work Time Theorem

Arbitrary

CRCW
O(D lg lg max(D,σ))) lg d · O(lgD/ lg lgD + lg lg σ) Theorem 2
O(N lg lgN) O(lgN/ lg lgN) [11] Theorem 4.4

CREW
O(D

√
lgD) lg d · O(lg3/2D

√
lg lgD) Theorem 2

O(N
√

lgN) O(lg3/2N
√

lg lgN) [11] Theorem 4.5

EREW
O(D

√
lgD lg lgD) lg d · O(lg3/2D

√
lg lgD) Theorem 2

O(N
√

lgN lg lgN) O(lg3/2N
√

lg lgN) [11] Theorem 4.5

b.) Results based on the sorter by JáJá et al. [14]:

Model Work Time Theorem

Common

CRCW
O(k lg k +D) lg d · O(lg2 k/ lg lg k) Theorem 3
O(k lg k +N) O(lg2 k/ lg lg k) [14] Theorem 3.1

Common

CRCW
w.h.p.

O(k lg k +D) lg d · O(lg k + lg d) Theorem 4
O(k lg k +N) O(lg k) [14] Theorem 5.1

c.) General results that hold for any parallel string sorter:

Model Work Time Lemma

Arbitrary

CRCW
w.h.p.

Ô(D) + w(k, 2D,σ) lg d · O(lg k + lg d) + t(k, 2D,σ) Lemma 6
w(k,N, σ) t(k,N, σ) –

EREW
w.h.p.

O(k
√

lg k lg lg k +D) lg d · O(lg k + lg d) +O(lg3/2 k · lg lg k)
Lemma 7

+ w(k, 2D,σ) + t(k, 2D,σ)
w(k,N, σ) t(k,N, σ) –

Lemma 1 (All-Prefix-Operation, e.g. [7]). Let a1, . . . , an be n integers,
and let ⊕ be a binary associative operator that can be evaluated in constant time.
The sequence a1, (a1 ⊕ a2), (a1 ⊕ a2 ⊕ a3), . . . , (a1 ⊕ · · · ⊕ an) can be computed in
the EREW model in O(n) work, O(n) space and O(lg n) time.

Lemma 2 (All-Prefix-Sums, [9]). The all-prefix-operation with addition as
associative operator can be computed in the Common-CRCW model in O(n) work,
O(n) space and O(lg n/ lg lg n) time.

Next, we introduce basic string processing notations. A string over the
alphabet Σ is a finite sequence of symbols from the set Σ = {1, . . . , σ}. We
write |s| to denote the length of a string s. The x-th symbol of a string is s[x],
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while the substring from the x-th to the y-th symbol is denoted as s[x..y] =
s[x]s[x+ 1] . . . s[y]. The substring s[1..y] is called length-y prefix of s.

Given k strings s1, . . . , sk, the length of the longest common prefix of two
strings si, sj is defined as lcp(si, sj) = max{ ` | si[1..`] = sj [1..`] }. Let ` =
lcp(si, sj). We say that si is lexicographically not larger than sj and write si � sj ,
iff either ` = |si|, or ` < min(|si| , |sj |) and si[`+ 1] < sj [`+ 1]. The strings are
in lexicographical order iff we have s1 � s2 � . . . � sk. The relevant prefix length
of si is `i = min(|si| , 1 + max{ lcp(si, sj) | 1 ≤ j ≤ k ∧ j 6= i }). The maximum
number of characters that need to be inspected for a single string-to-string
comparison is d = max{ `i | 1 ≤ i ≤ k }. Finally, the distinguishing prefix size of

the strings is defined as D =
∑k

i=1 `i, which is the minimum number of characters
that need to be inspected in order to lexicographically sort the strings.

Given k strings of total length N over the alphabet [1, σ], let f(k,N, σ) be a
function indicating the resources (e.g. the time or space) needed by an algorithm
to perform some task on the strings. We say that f is resilient in N iff multiplying
N by a constant factor increases f by at most a constant factor, i.e.,

∀c1 : ∃c2 : ∀k,N, σ : f(k, c1 ·N, σ) ≤ c2 · f(k,N, σ) (1)

(where all variables are from N+). This property will be useful when de-
termining the worst-case complexity bounds of our algorithms. Note that the
equation holds in the practical case where f is composed of a constant number
of polynomial and polylogarithmic terms.

3 Approximating the Distinguishing Prefix

In this section, we introduce our framework for D-aware parallel string sorting.
The general approach is to approximate the distinguishing prefix, resulting in
an array L of size k with L[i] ∈ [`i, 2`i), i.e. we obtain a 2-approximation of the
relevant prefix lengths. Afterwards, we can safely prune each string si to its prefix
s′i = si[1..L[i]]. Clearly, the total length of the strings s′1, . . . s

′
k is less than 2D,

and for any two strings we have si ≺ sj ⇔ s′i ≺ s′j . Therefore, we can then use
any (not D-aware) string sorting algorithm to sort the strings in time and work
depending solely on k, D, and σ.

Broadly speaking, the approximation scheme performs dlg de+1 rounds, where
in round r we identify and discard the strings si with `i ∈ (2r−1, 2r] (starting
with round r = 0). More precisely, amongst all not yet discarded strings, we
determine the ones whose length-2r prefix is unique. Since any such string has not
been discarded in the previous rounds, we have `i > 2r−1, while the uniqueness
of the length-2r prefix guarantees `i ≤ 2r. By assigning L[i]← min(|si| , 2r), we
obtain the desired 2-approximation of `i. The algorithm terminates as soon as
all strings have been discarded (and thus all relevant prefix approximations have
been found).

Let us look at a single round in technical detail. Let Ir be the set of strings
(or more precisely their indices) that survived until round r, and whose length
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Ir = [i1, i2, i3, i4, i5]

si1 si2 si3 si4 si5 si2 si5 si4 si1 si3

2r
{

2r
{

semisorting

Ir+1 = [i5, i1, i3]

too
short

unique
prefix

compaction

L[i2]← |si2 | L[i4]← 2r

Fig. 1. Round r of our approximation scheme. Equal colors identify equal prefixes (best
viewed in color).

is at least 2r, i.e. Ir = {i ∈ [1, k] | `i > 2r−1 ∧ |si| ≥ 2r}. Initially, before round
r = 0, we have I0 = {1, . . . , k}. From now on, let kr = |Ir| denote the number of
strings that survived until round r. Before starting the round, we assume that
Ir is given as a compact array of kr words. Each round consists of two phases,
which we explain in the following. The description is supported by Fig. 1.

Semisorting Phase. We semisort Ir using the length-2r prefixes of the cor-
responding strings as keys (i.e. entry Ir[j] = i is represented by the key
si[1..2

r]). Semisorting is a relaxation of sorting that reorders the entries such
that equal keys are contiguous, but different keys do not necessarily have
to appear in correct order. In the upcoming sections, we propose different
approaches for this phase.

Compaction Phase. Let Ir be semisorted as described above, and let i = Ir[j]
be any entry. Furthermore, let i− = Ir[j − 1] and i+ = Ir[j + 1] be the
neighboring entries of Ir[j]. Due to the semisorting, the length-2r prefix
of si is unique iff si− [1..2r] 6= si[1..2

r] 6= si+ [1..2r]. We trivially check this
condition for all entries simultaneously in O(kr · 2r) work and O(1) time in
the Common-CRCW model, or in the same work and O(lg 2r) = O(r) time in
the EREW model (which can be easily achieved using Lemma 1). If the prefix
of si is unique, we assign L[i]← 2r and Ir[j]← 0 (where Ir[j] = 0 indicates
that we no longer need to consider si in upcoming rounds). Otherwise, we
check if si is too short to be considered in the next round: If |si| ≤ 2r+1

holds, we assign L[i]← |si| and Ir[j]← 0. Finally, we obtain Ir+1 by moving
the non-zero entries of Ir to the front of the array. This requires a single
all-prefix-sums-operation [18, Section 3.1], and thus O(kr) work and O(lg kr)
time in the EREW model, or the same work and O(lg kr/ lg lg kr) time in
the Common-CRCW model (Lemmas 1 and 2).

Complexity. Before discussing different approaches for the semisorting phase,
we already give general bounds for the work and time complexity of our ap-
proximation scheme. For this purpose we only consider the compaction phase,
which takes O(kr · 2r) work in round r (regardless of the PRAM model) and thus
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O(
∑∞

r=0 kr · 2r) work in total. This is asymptotically optimal:

dlg de∑
r=0

kr ·2r =

dlg de∑
r=0

∑
i∈Ir

2r ≤
k∑

i=1

dlg `ie∑
r=0

2r <

k∑
i=1

2dlg `ie+1 ≤
k∑

i=1

4`i = 4D (2)

Next, we focus on the execution time in the EREW model. The com-
paction phase of round r takes O(r + lg kr) ⊆ O(lg d+ lg k) time, resulting in
O(lg d · (lg d+ lg k)) time for all rounds. In the Common-CRCW model, we have
O(lg kr/ lg lg kr) ⊆ O(lg k/ lg lg k) time for round r, and thus O(lg d · lg k/ lg lg k)
time in total.

4 Deriving Deterministic D-aware String Sorters

The perhaps easiest solution for the semisorting phase is to use an existing string
sorter as a subroutine, e.g. one of the algorithms that we discussed in Section 1.1.
Then, after finishing the last round of our approximation scheme, we reduce the
strings to their length-L[i] prefixes and sort them with the same algorithm that
we already used during the semisorting phase. This naturally results in a new
D-aware string sorter, as visualized in Fig. 2.

We obtain a general result for an important class of sorters: The ones that
do not rely on comparison sorting and typically require N · w(k,N, σ) work
and t(k,N, σ) time for some functions w and t that are resilient in N and non-
decreasing in k and N (e.g. Hagerup’s algorithm [11]). Using such an algorithm,
the semisorting phase of round r takes (kr · 2r) · w(kr, kr · 2r, σ) work. Summing
up all rounds, the total work for semisorting is O(D · w(k,D, σ)):

dlg de∑
r=0

(kr ·2r)·w(kr, kr ·2r, σ) ≤
dlg de∑
r=0

(kr ·2r)·w(k, 2D,σ) < 4D ·w(k, 2D,σ) (3)

The first inequality holds because w is non-decreasing in k and N , while the
second one holds due to Eq. (2). We have w(k, 2D,σ) = O(w(k,D, σ)) because w
is resilient in N . For the same reason, the time for the semisorting phase of round
r is t(kr, kr · 2r, σ) ≤ t(k, 2D,σ) = O(t(k,D, σ)). Combined with the bounds
from Section 3 we have:

Theorem 1. Let N · w(k,N, σ) and t(k,N, σ) be the work and time needed by
some algorithm to sort k strings of total length N over the alphabet [1, σ] (for
arbitrarily large σ), with w and t resilient in N and non-decreasing in k and
N . Let D be the distinguishing prefix size. Then we can sort the strings in
O(D · w(k,D, σ)) work and O(lg d · (lg d+ lg k + t(k,D, σ))) time. The PRAM
model matches the one of the string sorter. If the model is at least as strong as the
Common-CRCW model, the time decreases to O(lg d · (lg k/ lg lg k + t(k,D, σ))).

Note that the theorem requires a string sorter that allows arbitrary alphabets.
This is due to the fact that (even after the first round) the number kr of
remaining strings can become arbitrarily small. Consequently, the alphabet size
might become arbitrarily large compared to the total length kr · 2r of the strings
that we have to semisort in round r.
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strings
s1, . . . , sk

approximation
scheme

array L with
L[i] ∈ [`i, 2`i)

length-L[i] prefixes
of s1, . . . , sk

existing
string sorter

lex. ordering
of s1, . . . , sk

semisorting

Fig. 2. Deriving D-aware string sorters from existing D-unaware solutions.

Dealing With Large Alphabets. In theory, Theorem 1 directly implies new
D-aware string sorters. However, while the theorem applies to sorters for arbi-
trary alphabets, many of the existing string sorting algorithms are restricted to
polynomial alphabets (i.e. σ = NO(1)). In the remainder of this section, we show
that even such alphabet restricted sorters work with Theorem 1, if we equip them
with an additional preprocessing routine. We demonstrate the technique using
Hagerup’s algorithm [11] as an example. It will be easy to see that it would just
as well work with any other string sorter. Recall Hagerup’s original result:

Lemma 3 (Hagerup [11], Theorems 4.4 and 4.5). A set of strings of
total length N over the alphabet [1, NO(1)] can be sorted in O(lgN/ lg lgN)
time and O(N lg lgN) work in the CRCW model, or in O(N

√
lgN) work and

O(lg3/2N
√

lg lgN) time in the CREW model, or in O(N
√

lgN lg lgN) work

and O(lg3/2N
√

lg lgN) time in the EREW model.

Remark: Hagerup does not explicitly state which variant of the CRCW model is
used. However, the algorithm relies on a padded integer sorting subroutine that
requires the Arbitrary-CRCW model [12]. It appears that all other operations
performed by the algorithm require at most the Arbitrary-CRCW model as well.

In order to generalize Lemma 3 to arbitrary alphabets [1, σ] with σ /∈ NO(1),
we perform a preprocessing that reduces the alphabet to [1, N ] in an order
preserving manner. The general idea is to use an integer sorter to sort the
symbols that actually occur in any of the strings. Then, we can simply replace
each symbol with its rank amongst the sorted symbols. A similar reduction
technique has previously been used by Hagerup [11, p. 389] (but for a different
purpose). For now, we only consider the Arbitrary-CRCW model.

First, we create N tuples of the form 〈i, j, c〉, where c is the j-th symbol
of si. Initially, the tuples are ordered by their first and second component, i.e.
〈1, 1, · 〉 . . . 〈1, |s1| , · 〉 〈2, 1, · 〉 . . . 〈2, |s2| , · 〉 . . . 〈k, 1, · 〉 . . . 〈k, |sk| , · 〉. In order to
store this sequence in a consecutive memory area, we have to determine the
position of each tuple within the sequence. Using the all-prefix-sums-operation,
we can trivially realize this step in O(N) work and O(lgN/ lg lgN) time due
to Lemma 2. Then, we use the integer sorting algorithm by Bhatt et al. [3]
to sort the tuples by their third component, which takes O(N lg lg σ) work
and O(lgN/ lg lgN + lg lg σ) time. Let 〈i1, j1, c1〉 . . . 〈iN , jN , cN 〉 be the sorted
sequence of tuples. In an array A ∈ {0, 1}N , we mark the (in terms of the sequence)
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leftmost occurrence of each character, i.e. ∀h ∈ [2, N ] : ch−1 6= ch ⇔ A[h] = 1.
Next, we replace A with its prefix-sums, once again taking O(N) work and
O(lgN/ lg lgN) time due to Lemma 2. Now each entry A[h] contains exactly
the rank of the symbol ch amongst all symbols. Finally, for each h ∈ [1, N ], we
replace the jh-th symbol of the ih-th string with A[h] + 1. Since this reduces the
alphabet to (a subset of) [1, N ] in an order preserving manner, we can sort the
strings using Lemma 3.

In the weaker CREW and EREW models we use the same technique, but
replace the algorithm by Bhatt et al. with Han and Shen’s integer sorter in the
EREW model [13, Theorem 4.1], which sorts the N tuples in O(N

√
lgN) work

and O(lg3/2N) time. We have shown:

Corollary 1. A set of strings of total length N over the alphabet [1, σ] can be
sorted in O(lgN/ lg lgN + lg lg σ) time and O(N lg lgN +N lg lg σ) work in the

Arbitrary-CRCW model, or in O(N
√

lgN) work and O(lg3/2N
√

lg lgN) time in

the CREW model, or in O(N
√

lgN lg lgN) work and O(lg3/2N
√

lg lgN) time
in the EREW model.

Theorem 2. A set of k strings over the alphabet [1, σ] with distinguishing prefix
size D and longest relevant prefix of length d can be sorted in the work and time
stated in Table 1(a).

The theorem follows from Corollary 1 and Theorem 1. Note that the work and
time in the Arbitrary-CRCW model are O(D lg lgD) and O(lg d · lgD/ lg lgD),
respectively, if the alphabet is quasipolynomial in the distinguishing prefix size,

i.e. σ = D(lgO(1) D).

4.1 Deriving Comparison-Based Sorters

As mentioned earlier, any comparison-based string sorter requires Ω(k lg k +D)
work. In this section, we take the O(k lg k +N) work algorithm by JáJá et al. [14],
and derive an O(k lg k +D) work modification, thus matching the lower bound.
Assuming that we use the O(k lg k +N) work algorithm to realize the semisorting
phase of our approximation scheme, the work for semisorting in round r becomes
O(kr lg kr + kr · 2r). After the dlg lg ke-th round, the kr · 2r term dominates the
kr lg kr term. Therefore, the total work for semisorting is:

O

dlg de∑
r=0

kr lg kr + kr · 2r
 = O

dlg lg ke−1∑
r=0

kr lg kr +

dlg de∑
r=0

kr · 2r
 (4)

Following Eq. (2), the second sum on the right-hand side of the equation is
bounded by O(D). Unfortunately, there appears to be no such upper bound for
the first sum. Therefore, we relax our approximation scheme by simply skipping
the initial dlg lg ke rounds. This way, the first round that we actually perform is
round r = dlg lg ke, during which we consider prefixes of length 2dlg lg ke < 2 lg k.
Note that consequently we may overestimate the length of relevant prefixes by
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2 lg k additional symbols, i.e. we obtain L′[i] ∈ [`i, 2 ·max(lg k, `i)). Thus, when
truncating each string to its prefix si[1..L

′[i]], the total length of the strings is

D′ :=

k∑
i=1

L′[i] < 2

k∑
i=1

(lg k + `i) = 2k lg k + 2D. (5)

Therefore, after computing L′, we can use the algorithm by JáJá et al. once
more to sort the truncated strings in optimal O(k lg k +D′) ⊆ O(k lg k +D)
work. The semisorting in round r takes O(lg2 kr/ lg lg kr) ⊆ O(lg2 k/ lg lg k) time,
and there are dlg de − dlg lg ke = O(lg d) rounds. Together with the bounds from
Section 3 we have:

Theorem 3. A set of k strings with distinguishing prefix size D and longest rele-
vant prefix of length d can be sorted in the Common-CRCW model in O(k lg k +D)
work and O(lg d · lg2 k/ lg lg k) time.

Note that we cannot trivially use our approximation scheme to derive a
D-aware modification of the randomized string sorter by JáJá et al. [14], which
sorts k strings of total length N in O(k lg k +N) work and O(lg k) time with
high probability, i.e. with probability 1− (1/k)c for any constant c > 0. If we were
using this algorithm for the semisorting phase, then the probability of successfully
sorting the remaining strings in round r would be 1−(1/kr)c. However, even after
the first round, kr can become arbitrarily small, resulting in a low probability of
success. The randomized string semisorters from the next section will allow us to
circumvent this problem.

5 Randomized String Semisorting

In this section, we equip our approximation scheme with randomized string
semisorters that are based on Karp-Rabin fingerprints [15]. The goal of these
fingerprints is to hash substrings to small integers, which allows fast equality
testing. Consider the semisorting phase of round r, during which we have to
semisort kr string prefixes of length 2r each. Instead of directly semisorting the
prefixes, we first compute a fingerprint as a representative for each prefix, and
then semisort the fingerprints. This way, we can use less complex integer sorting
algorithms as a subroutine. Before going into detail, we show how to efficiently
compute fingerprints in the EREW model.

In order to define Karp-Rabin fingerprints, we use a prime number q = Θ(N c)
for some constant c > 1, and a value b ∈ [q, 2q) chosen uniformly at random. The
Karp-Rabin fingerprint φi(x, y) of the substring si[x..y] is defined as follows:

φi(x, y) =

y∑
z=x

si[z] · by−z mod q (6)

Observe that equal substrings have equal fingerprints, i.e. for every integer
n ≥ 0 it holds si[x..x + n] = sj [y..y + n] =⇒ φi(x, x + n) = φj(y, y + n).
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On the other hand, if two substrings are not equal, their fingerprints will be
different with high probability. In particular, if si[x..x+ n] 6= sj [y..y + n] then
Prob[φi(x, x+ n) = φj(y, y + n)] ≤ n+1

q = O(N1−c). Thus, by choosing a large
enough constant c > 1, we can control the probability of false positives when
comparing fingerprints instead of substrings. Using the all-prefix-operation, Karp-
Rabin fingerprints can be computed efficiently in parallel:

Lemma 4. For every `-character substring si[x..x + ` − 1], the Karp-Rabin
fingerprint φi(x, x+ `− 1) can be computed in O(`) work, O(`) space, and O(lg `)
time in the EREW model.

Proof. First, we compute the sequence of exponents b0, b1, . . . , b`−1 (mod q)
using the all-prefix-operation with multiplication over Zq as the associative
operator. Then, we simultaneously compute all values f0, . . . , f`−1 with fj =
si[x+ j] · b`−j−1 (mod q) in constant time. Finally, the Karp-Rabin fingerprint
φi(x, x+`−1) is the sum of all the fj over Zq, which can be computed via another
all-prefix-operation. The stated complexity bounds follow from Lemma 1. ut

During round r of our approximation scheme, we can simultaneously com-
pute the fingerprints of all length-2r prefixes, which takes O(kr · 2r) work and
O(r) ⊆ O(lg d) time. It remains to be shown how to semisort the fingerprints. For
now, similarly to Section 4.1, we skip the first dlg lg ke rounds. In the remaining
rounds, we use Cole’s parallel merge sort [8], which sorts the kr fingerprints in
round r in O(kr lg kr) ⊆ O(kr · 2r) work and O(lg kr) time. This results in the
following complexity bounds:

Lemma 5. For any constant c > 0, the array L′ with L′[i] ∈ [`i, 2 ·max(lg k, `i))
can be computed in the EREW model in O(D) work and O(lg d · (lg d+ lg k))
time w.h.p. 1− (1/N)c.

Now we can already derive a D-aware modification of the randomized string
sorter by JáJá et al [14]. Just as in Section 4.1, we simply compute L′ (using
Lemma 5), and then run the original string sorter. It follows:

Theorem 4. For any constant c > 0, a set of k strings with distinguishing prefix
size D and longest relevant prefix of length d can be sorted in the Common-CRCW
model in O(k lg k +D) work and O(lg d · (lg d+ lg k)) time w.h.p. 1− (1/k)c.

5.1 Handling the Initial dlg lg ke Rounds

Finally, we show how to (semi-)sort the fingerprints in the first dlg lg ke rounds.
Ideally, we would like to use the randomized semisorter by Gu et al. [10], which
sorts kr fingerprints in the Arbitrary-CRCW model in expected optimal O(kr)
work and O(lg kr) time with high probability 1 − (1/kr)c. However, as in the
previous section, kr and thus the probability of success can become arbitrarily
small. Therefore, we only use the semisorter by Gu et al. in rounds when kr >
k/ lg2 k (resulting in O(kr) work), and Cole’s mergesort, otherwise (resulting in
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O(k/ lg k) work). This way, in every round the expected work for semisorting
fingerprints is O(kr + k/ lg k), the time is O(lg k), and the probability of success
is at least 1 − (lg2 k/k)c > 1 − (1/k)(c/2). Summing up the expected work for
semisorting during the first dlg lg ke rounds, we have:

dlg lg ke∑
r=1

kr +

dlg lg ke∑
r=1

k/ lg k =

dlg lg ke∑
r=1

kr + o(k) = O(D).

Together with the bounds for computing fingerprints (see Section 5) and for
the compaction phase (see Section 3), we get:

Lemma 6. For any constant c > 0, the array L with L[i] ∈ [`i, 2`i) can be
computed in the Arbitrary-CRCW model in expected optimal O(D) work and
O(lg d · (lg d+ lg k)) time w.h.p. 1− (1/k)c.

In the weaker EREW model, we can replace the semisorter by Gu et al. with
the deterministic integer sorter by Han and Shen [13] that we already used in
the proof of Corollary 1. This results in the following bounds:

Lemma 7. For any constant c > 0, the array L with L[i] ∈ [`i, 2`i) can be
computed in the EREW model in O(k

√
lg k lg lg k +D) work and O(lg d · (lg d+

lg k) + lg3/2 k · lg lg k) time w.h.p. 1− (1/N)c.

Note that the probability of success is 1− (1/N)c (rather than 1− (1/k)c as
in Lemma 6) because we no longer use a probabilistic semisorter, and errors can
only occur due to fingerprint collisions.

Lemmas 6 and 7 directly imply the results stated in Table 1(c).

6 Conclusion and Open Questions

We presented a theoretical framework that approximates the distinguishing prefix,
resulting in the first D-aware string sorters in the PRAM model. It remains an
open question, if the lg d time factor can be avoided without increasing the work.
Generally, it is unknown if a constant approximation of the distinguishing prefix
can be computed deterministically in optimal O(D) work and reasonable time.
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