
Analysis-driven Engineering of Comparison-based
Sorting Algorithms on GPUs

Ben Karsin
University of Hawaii at Mānoa

USA
karsin@hawaii.edu

Volker Weichert
Goethe University Frankfurt

Germany
weichert@cs.uni-frankfurt.de

Henri Casanova
University of Hawaii at Mānoa

USA
henric@hawaii.edu

John Iacono
New York University

USA
iacono@nyu.edu

Nodari Sitchinava
University of Hawaii at Mānoa,

USA
nodari@hawaii.edu

ABSTRACT

We study the relationship between memory accesses, bank
conflicts, threadmultiplicity (also known as over-subscription)
and instruction-level parallelism in comparison-based sort-
ing algorithms for Graphics Processing Units (GPUs). We
experimentally validate a proposed formula that relates these
parameters with asymptotic analysis of the number of mem-
ory accesses by an algorithm. Using this formula we analyze
and compare several GPU sorting algorithms, identifying
key performance bottlenecks in each one of them. Based on
this analysis we propose a GPU-efficient multiway merge-
sort algorithm, GPU-MMS, which minimizes or eliminates
these bottlenecks and balances various limiting factors for
specific hardware.

We realize an implementation of GPU-MMS and compare
it to sorting algorithm implementations in state-of-the-art
GPU libraries on three GPU architectures. Despite these
library implementations being highly optimized, we find
that GPU-MMS outperforms them by an average of 21% for
random integer inputs and 14% for random key-value pairs.

This material is based upon work supported by the National Science Founda-
tion under Grants CCF-1533823, CCF-1745331, CCF-1319648, CCF-1533564,
CCF-0430849 and MRI-1229185, a Fulbright Fellowship and by the Fonds de
la Recherche Scientifique-FNRS under Grant nÂř MISU F 6001 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205298

KEYWORDS

GPU, sorting, mergesort, bank conflicts, I/O efficiency
ACM Reference Format:

BenKarsin, VolkerWeichert, Henri Casanova, John Iacono, andNodari
Sitchinava. 2018. Analysis-driven Engineering of Comparison-based
Sorting Algorithms on GPUs. In ICS ’18: 2018 International Confer-
ence on Supercomputing, June 12–15, 2018, Beijing, China.ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3205289.3205298

1 INTRODUCTION

Sorting is a primitive operation that is a building block
for countless algorithms. It is therefore important to de-
sign and implement sorting algorithms that approach peak
performance on a range of hardware architectures. Graph-
ics Processing Units (GPUs) are particularly attractive ar-
chitectures as they provide massive parallelism and com-
puting power. However, designing and implementing algo-
rithms that achieve peak performance on GPUs is a chal-
lenging task. Many factors can stifle GPU performance, in-
cluding: sub-optimal memory access patterns, insufficient
parallelism, overuse of scarce resources (e.g., shared mem-
ory), low instruction-level parallelism (ILP), and thread branch
divergence. Many prior works have considered these factors
individually and provided models and optimizations in an
attempt to achieve peak GPU performance [1, 11, 16, 24, 25,
31, 41]. However, there is frequently a complex tradeoff be-
tween these performance factors and it is not clear which
of them affect overall performance the most. For example, it
is well-known that a large multiplicity 1 (number of threads
scheduled per core) is required to hide memory latency. But
excessive use of shared memory to avoid slow global mem-
ory accesses may reduce the number of threads scheduled
per core due to lack of shared memory resources. As a result
of these complex tradeoffs, developers frequently rely on
heuristics and trial-and-error to achieve high performance
1Also known as over-subscription.

1

https://doi.org/10.1145/3205289.3205298
https://doi.org/10.1145/3205289.3205298

ICS ’18, June 12–15, 2018, Beijing, China B. Karsin et al.

on GPUs. Instead, we propose an analytical approach to
identify these tradeoffs, aiding in the development of new,
GPU-efficient algorithms.
In this paper, we focus on the analysis and design of

comparison-based sorting algorithms for GPUs. A natural
question arises: why bother with comparison-based sorting
algorithms? After all, all numbers on modern computers are
stored in binary representation and one can map these repre-
sentations to integers and use an integer sorting algorithm,
such as radix sort, which is known to be faster in practice. To
answer this question, consider the following problem, which
is a natural problem in computational geometry: given a set
of line segments defined by endpoints with integer coordi-
nates, order them by their slopes. Storing the slopes as fixed
precision floating point numbers can lead to rounding errors
and, consequently, to erroneous result [4]. Instead, the slopes
can be stored without any loss in precision as fractions, each
represented by two integers: a numerator and a denominator.
Then, the relative order of two fractions a

b and c
d can easily

be determined without any loss in precision by comparing
ad to bc . Observe that to use radix sort to sort these frac-
tions, one would need to convert them into fractions with a
common denominator, which can require up to O(n) bits.
Comparison-based sorting is a thoroughly studied prob-

lem, with many implementations on GPUs, including the
highly optimized MGPU [3] and Thrust [15] library imple-
mentations. Yet, even for such a comprehensively studied
problem, the effects of the above factors and tradeoffs be-
tween them is not well-understood. Thus, we discuss these
factors to better understand how to balance them when de-
veloping GPU-efficient sorting algorithms. We assume the
reader is familiar with the aspects and terminology of the
GPU architectures, including thread organization, memory
hierarchy design and ideal data access patterns [33].

Bank conflicts. It is well-known [1, 21, 33] that when uti-
lizing shared memory, an algorithm must be careful to avoid
bank conflicts, as they negatively impact performance. Yet,
sometimes completely eliminating bank conflicts requires
an algorithm with higher complexity, and the increase in
the number of operations can offsets the benefit of remov-
ing bank conflicts. Instead, practitioners use heuristics to
reduce the number of bank conflicts by changing access pat-
terns without drastically changing the algorithm. This rarely
eliminates bank conflicts completely, and we show in Sec-
tion 3.3 that even a small average number of conflicts due
to randomly generated inputs can significantly impact per-
formance. Furthermore, one can find inputs that undermine
these heuristics and cause a large number of bank conflicts.
In Section 6.2 we show that, without too much effort, we can
generate conflict-heavy inputs that cause a state-of-the-art
sorting library implementation to execute up to 20% slower
due to bank conflicts.

Memoryhierarchyutilization. The three levels ofmem-
ory hierarchy on GPUs (global memory, shared memory, reg-
isters)2 provide various access latencies and bandwidths. All
else being equal, using a faster memory type will obviously
result in a faster implementation. However, often the utiliza-
tion of faster memory results in more complex algorithms
and the tradeoff between different approaches is not as clear.
For example, Leischner et al. [23] present a randomized GPU
samplesort algorithm, which implements multiway quicksort.
Extensive research on I/O-efficient algorithms predicts that
such multiway sorting algorithms should fully utilize fast
shared memory and reduce accesses to slow global memory.
Despite these types of I/O-efficient algorithms performing
well on CPUs, on the GPU the MGPU library implementa-
tion of simple two-way mergesort [3] is much faster than
the multiway samplesort of Leischner et al. [23].

Bank conflict free algorithms. One of the arguments
why samplesort of Leischner et al. [23] is not the fastest in
practice could be attributed to large number of bank con-
flicts in shared memory. Therefore, Koike and Sadakane [21]
developed a bank conflict free multi-way mergesort algo-
rithm. Unfortunately, we could not obtain the source code of
their implementation to compare it to MGPU experimentally.
However, analysis of their results indicates that, despite su-
perior utilization of shared memory and bank conflict avoid-
ance, their multiway mergesort would still be slower than
MGPU’s two-way mergesort implementation.

Thread occupancy, multiplicity and ILP. Using I/O
complexity analysis of the External Memory model [2], it
can be shown that the multiway mergesort of Koike and
Sadakane [21] achieves asymptotically optimal global mem-
ory accesses, while MGPU mergesort does not. However, the
I/O complexity analysis ignores many other performance fac-
tors that are significant for GPUs. In Section 4.2 we determine
that the data structures used by Koike and Sadakane require
a large amount of shared memory, limiting occupancy and
significantly reducing overall performance. This illustrates
the importance of parallelism when designing GPU-efficient
algorithms. In Section 3, we investigate the impact of paral-
lelism on GPU performance, showing that both multiplicity
and ILP are important GPU performance factors.

1.1 Our Contributions

In this paper, we present an analytical framework that we use
to study a range of factors that impact the performance of
GPU-efficient comparison-based sorting algorithms. In par-
ticular, we consider the relationship between multiplicity X,
instruction-level parallelism I, bandwidth B, and latency L

2Modern GPUs contain other types of memory that we do not consider
here. Caches are implemented in the shared and global memories that we do
discuss, while texture and constant memories are more useful for graphics
rendering than general purpose computations.

2

Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs ICS ’18, June 12–15, 2018, Beijing, China

of global memory, shared memory, and registers on NVIDIA
GPUs. We experimentally verify the accuracy of our frame-
work and show a simple mathematical relationship between
these parameters and how their tradeoffs affect algorithm
execution times. For example, we show that on our hard-
ware, multiplicity X and ILP I are fully interchangeable via
a simple relationship: I · X ≥ 8.

We consider two state-of-the-art GPU-efficient sorting al-
gorithms: modernGPU (MGPU) [3] pairwise mergesort and
themultiwaymergesort presented by Koike and Sadakane [21].
For each algorithm, we analytically identify performance bot-
tlenecks. We then present GPU-MMS, a multiway mergesort
algorithm that mitigates or avoids these bottlenecks. MGPU
suffers from a sub-optimal number of global memory ac-
cesses, which we experimentally determine to account for
up to 75% of overall runtime. GPU-MMS avoids this, achiev-
ing an asymptotically optimal number of global memory
accesses at the cost of additional computation.3 As a result,
GPU-MMS achieves a balance between time spent computing
and time spent accessing memory. We find that the primary
bottleneck of Koike and Sadakane’s multiway mergesort is a
lack of sufficient parallelism. GPU-MMS mitigates this issue
by increasing both multiplicity and ILP. We show empiri-
cally that GPU-MMS outperforms the fastest currently avail-
able comparison-based sorting algorithms by up to 32.7%
on random integer inputs and 67.2% on worst-case input
permutations of integers.

Outline. The rest of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes our micro-
benchmarks. Section 4 presents our analysis of the existing
state-of-the-art sorting algorithms, and Section 5 details our
design and implementation of GPU-MMS. Section 6 presents
experimental results. Finally, Section 7 concludes with a
discussion of the significance of our results.

2 RELATEDWORK

Over the past decade, a lot of research has focused on design-
ing efficient algorithms to solve a range of classical problems
on GPUs [9, 12, 17, 27, 36, 37, 39]. These works have intro-
duced several optimization techniques, such as coalesced
memory accesses [10, 11, 35], branch divergence elimina-
tion [19, 23], and bank conflict avoidance [1, 6, 9, 19]. Several
empirical models for specific GPUs have been proposed that
use micro-benchmarking [5, 41], and several fast GPU algo-
rithms have been produced [10, 17, 39] via the use of bench-
marks [40] and application of hardware-specific optimization
techniques to existing algorithms. Several authors proposed
abstract GPU performance models, attempting to capture

3Finding a parallel sorting algorithm that is both I/O-efficient and work-
efficient remains a difficult open problem.

salient features of the GPU architectures in a way that at-
tempts to balance accuracy and simplicity [16, 22, 25, 30, 31].
Despite these efforts, to the best of our knowledge, no prior
work analyzed the tradeoff relationship between all of the
above performance parameters that we study here.
Sorting has been extensively studied over the past half-

century, and here we only mention previous work that fo-
cuses on the GPUs [3, 8, 12, 23, 26, 29, 38]. According to a re-
cent survey of several GPU libraries [29] the fastest currently-
available sorting implementations include the CUB [26], mod-
ernGPU (MGPU) [3], and Thrust [15] libraries. CUB employs
a GPU-optimized radix sort, which sorts based on the binary
representation of elements. MGPU and Thrust use variations
of mergesort (based on Green et al. [12]) While highly opti-
mized, these mergesort implementations issue sub-optimal
numbers of global memory accesses and incur shared mem-
ory bank conflicts. Leischner et al. [23] introduced GPU sam-
plesort, discussed in Section 1. Their work was continued by
Dehne et al. [8] with a deterministic version of the samplesort
algorithm. The work of Afshani and Sitchinava [1] focuses
on shared memory only and presents an algorithm that sorts
small inputs in shared memory without bank conflicts. Koike
and Sadakane [21] also present a GPU sorting algorithm
that minimizes global memory accesses using a multiway
mergesort that is also bank conflict-free (we analyze their
algorithm Section 4.2).

3 GPU PERFORMANCE FACTORS

In this section, we use a series of micro-benchmarks to de-
termine the performance profile of each level of the memory
hierarchy (including registers). We use the results to analyze
several sorting algorithms (Sections 4 and 5).

3.1 Experimental Methodology

We perform all experiments using three hardware platforms.
All computations are performed on the graphics cards, and
no attempt is made to use CPU compute resources. Execu-
tion times are measured as time spent computing on the
GPU, while time to transfer data between the CPU and GPU
is not included, as is customary in these types of experi-
ments [12, 23]. Table 1 presents the hardware specifications
of our three platforms, as well as the parameters derived via
micro-benchmarks. On all platforms we use GCC 4.8.1 and
CUDA 7.5, and all programs are compiled with the -O3 op-
timization flag. Performance metrics such as bank conflicts
are obtained via the nvprof profiling tool [32], included in
the CUDA 7.5 toolkit. Since running nvprof impacts perfor-
mance, execution times are measured on separate runs using
the cudaEvent timer. Unless otherwise noted, Each experi-
ment is repeated ten times, and we report the mean values,
showing min-max error bars when non-negligible.

3

ICS ’18, June 12–15, 2018, Beijing, China B. Karsin et al.

3.2 Parallelism and Memory Performance

As discussed in Section 1, GPUs rely on multiplicity and
instruction-level parallelism (ILP) to hide memory latencies
and improve throughput. Formally, we say that the multi-
plicity X of an implementation is the number of threads
running per physical core (i.e., with P cores, we have a total
of X · P threads), while the ILP, I, is the average number of
consecutive independent instructions. The practical impact
of both multiplicity and ILP is to hide the latency of each
memory access. For instance, if we consider a single core
accessing a particular memory system A times, where each
access has latency L, the runtime would be A · L

X·I
. We

define the latencies, Lд , Ls , and Lr as the number of clock
cycles required to access global memory, shared memory,
and registers, respectively. By increasing multiplicity and/or
ILP, we can decrease the time needed to perform these ac-
cesses until peak bandwidth is reached for the particular
memory system. We denote the peak bandwidth of global
memory, shared memory, and registers as Bд , Bs , and Br ,
respectively. We normalize bandwidth values to be the peak
number of elements accessed per clock cycle, per core. Thus,
with P processor cores, we estimate the total time to perform
AP parallel accesses to a memory system with latency L

and bandwidth B to be:

T ≈ AP ·max
(
1
B
,

⌈
L

X · I

⌉)
.

To verify the above performance estimate, we perform a
series of micro-benchmarks that measure the average time
to access each type of memory while varying multiplicity
(X) and ILP (I), on each of our platforms.

We measure the impact of multiplicity and ILP on global
memory performancewith amicro-benchmark that performs

Table 1 Specifications of three platforms, including pa-

rameters measured by benchmarks (denoted by a *)

and hardware details provided by the manufacturer.

Parameter Algoparc Gibson Uhhpc
NVIDIA GPU Model M4000 GTX 770 K40m
Generation Maxwell Kepler Kepler
Global Memory 8 GiB 4 GiB 12 GiB
Total Cores (P) 1664 1536 2880
Clock Rate 780 MHz 1046 MHz 745 MHz
Total smem (M) 1248 KiB 512 KiB 960 KiB
*Bд (elts/clock/core) 0.0301 0.0279 .0275
*Bs (elts/clock/core) 0.233 0.130 0.131
*Br (elts/clock/core) ≈ 1 ≈ 1 ≈ 1
*Łд (clocks) 269.5 267.6 291.2
*Łs (clocks) 85.84 123.1 111.9
*Łr (clocks) 6 10 10

Figure 1 Average global memory micro-benchmark

runtime vs. multiplicity (X) for several ILP (I) values.

Results onAlgoparcwith N = 216 integers per thread.
Once X · I = 8, peak bandwidth is reached.

a simple copy in global memory. Each thread copies N ele-
ments from one array in global memory to another (also in
global memory). Therefore, this micro-benchmark performs
2N memory accesses per thread, with PX total threads, or
2N ·XP

P = 2NX parallel memory accesses, so we expect it to
run in 2NX ·max

(
1
Bд
,
⌈
Lд
XI

⌉)
clock cycles. We vary X by

varying the number of threads and I by loading elements
into registers before writing them into the destination array
and observe their impact on memory access time.

Figure 1 plots average execution time vs. multiplicity (X)
on Algoparc when each thread copies 216 integer elements
from one global memory array into another, for several ILP
(I) values. When X = 1 and I = 1, the average time per
memory access, in clocks, is simply the latency, Lд , and for
larger amounts of ILP (I), each access takes less time (i.e.,
Lд
I
). As X grows, however, the total number of accesses

grows as well, so constant execution time indicates reduced
average time per access (i.e., Lд

X
). Once X · I becomes large

enough (∼ 8 in Figure 1), the time spent per access becomes
constant. At this point, increasing I has no impact and in-
creasing X increases execution time linearly, since the num-
ber of accesses increases with X. This corresponds to the
point where 1

Bд
≥

Lд
XI

, which is the inflection point in Fig-
ure 1 where execution time begins to increase. From this we
estimate Bд =

2N X
T , whereT is the measured execution time.

The latency and peak bandwidth for shared memory (Ls
and Bs), and registers (Lr and Br) are measured similarly.
Table 1 gives L and B values obtained for the three levels
of memory hierarchy on our three hardware platforms.

3.3 Bank Conflicts

As discussed in Section 1, shared memory must be accessed
in a specific pattern to avoid bank conflicts. To illustrate the
practical significance of bank conflicts, we consider the state-
of-the-art MGPU mergesort [3] algorithm (for details see

4

Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs ICS ’18, June 12–15, 2018, Beijing, China

Figure 2MGPU runtime and number of bank conflicts

vs. input sortedness for N = 108. Global memory trans-

actions are shown to illustrate that they are largely in-

dependent of input sortedness.

Section 4.1). Although MGPU mergesort uses a heuristic to
reduce bank conflicts, its shared memory access pattern is
data-dependent, so the number of bank conflicts is a function
of the input. Figure 2 illustrates a strong correlation between
the number of bank conflicts and overall runtime of MGPU
mergesort. Results show that, on Uhhpc, as we increase the
level of unsortedness, i.e., the number of inversions, the num-
ber of bank conflicts (measured using an execution profiler)
increases along with the overall execution time.

While we can measure bank conflicts and see that they im-
pact GPU performance, theoretical analysis of bank conflicts
on such data dependent access patterns is a challenging open
problem. For this reason, we do not attempt to analyze bank
conflicts theoretically. Instead, we let β denote an average
number of bank conflicts that occur for a particular set of
shared memory accesses, measure it empirically, and incor-
porate it into our performance estimate. Since β is typically
only a function of the input and/or the algorithm, we can
measure it on one architecture and use it to estimate the
performance on a range of GPUs.

4 STATE-OF-THE-ART GPU SORTING

While a number of sorting algorithms have been proposed
for GPU architectures [1, 3, 8, 15, 21, 23, 26, 28, 29], the
CUB [26], Thrust [15], and MGPU [3] libraries currently pro-
vide the fastest sorting implementations. We focus our anal-
ysis on MGPU mergesort, because Thrust employs a similar
comparison-based algorithm and CUB is not a comparison-
based algorithm.

4.1 MGPU Mergesort

The modernGPU (MGPU) library [3] is a collection of highly
optimized implementations of fundamental algorithms for
modern GPU architectures. While MGPU is not frequently
updated, many of its implementations remain the fastest

available for NVIDIA GPUs. The sorting implementation
included with MGPU is based on pairwise mergesort [7]
with a high degree of parallelism to run efficiently on GPUs.

MGPU algorithm overview – The latest MGPU (ver-
sion 2.10) mergesort takes an unsorted input of N elements
and performs a series of merge rounds to generate a sorted
output. MGPU assigns a fixed number E of elements to
each thread, where E depends on the GPU hardware (either
E = 11 or E = 15). Threads are grouped into thread-blocks of
t = 128 threads each. The algorithm begins by having each
thread sort E elements independently. Each thread-block
then merges t lists in shared memory to obtain a sorted list
of tE elements (we call this the base case). Pairs of lists are
then merged in subsequent rounds, with increasing num-
bers of threads performing each merge. During each merge
round, lists are partitioned using the Mergepath [13] method
in both global and shared memory.

Execution Time Estimate –We omit the details of our
analysis of the MGPU mergesort algorithm due to lack of
space. For full details, we refer interested readers to Karsin’s
dissertation [18] that includes a thorough analysis of MGPU.
Combining this analysis with the benchmark results from
Section 3, we estimate the runtime of MGPU mergesort as:

T ≈ Tд +Ts ,

Tд ≈
2N
P

(⌈
log

N
tE

⌉
+
N ⌈log (NtE)⌉

⌈
log N

2tE
⌉

4tE
+ 1

)
max

(
1
Bд

,
Lд

XI

)
,

Ts ≈
2N
P

©­­«β1
⌈
log

(
N
E

)⌉
+ β2

⌈log (tE)⌉ ⌈log
(
N
tE

)
⌉

2E
ª®®¬max

(
1
Bs

,
Ls

XI

)
,

where Tд and Ts denotes the global and shared memory
access times, respectively.

We determine β1 = 3.1 and β2 = 2.2 by using the nvprof
tool [33] to empirically measure average numbers of bank
conflicts. These are simply estimates obtained with random
inputs and certain permutations may result in more or fewer
bank conflicts. We investigate this further in Section 6.2 by
generating inputs that result in many bank conflicts.
Since MGPU mergesort uses few registers, multiplicity

X is limited only by shared memory usage. Each thread
stores E elements in shared memory, and the GPU has a total
shared memory of size M , thus X = M

PE . ILP (I) depends
on optimizations and varies for each phase. MGPU employs
global memory access optimizations proposed by Merrill and
Grimshaw [27] that effectively doubles I. Shared memory
accesses are dependent, though additional accesses due to
bank conflicts are automatically issued independently [33],
so I = β1 or I = β2, depending on the kernel.

Combining the above analysis with the hardware parame-
ters listed in Table 1, we predict the execution time of MGPU

5

ICS ’18, June 12–15, 2018, Beijing, China B. Karsin et al.

Figure 3 Estimated and measured MGPU mergesort

throughput when varying E (elements per thread) on

Algoparc, for N = 100M .

mergesort on our three hardware platforms, estimate op-
timal parameter values (e.g., E), and identify bottlenecks.
Figure 3 shows our throughput estimate as E varies, on the
Algoparc platform, along with the throughput measured
when running MGPU. These results indicate that our esti-
mate correctly predicts the best value for E to be 31, despite
MGPU using E = 15 for Maxwell generation GPUs, like that
on Algoparc. Our overall execution time estimate has an
average relative error of 7.48%.

On all three platforms, our estimate indicates that between
65% and 75% of execution time is due to global memory ac-
cesses. The remaining portion of execution time is attributed
to shared memory accesses. We measure β for merging and
partition phases to be 3.1 and 2.2, respectively, indicating that
bank conflicts contribute roughly 15-20% to overall execution
time. We conclude that MGPU suffers from two primary per-
formance bottlenecks: global memory bandwidth and shared
memory bank conflicts.

4.2 Koike and Sadakane’s Multiway

Mergesort

Pairwise mergesort requiresO(log2 N)merge rounds, where
N elements must be read from (and written to) global mem-
ory at each round, leading to the global memory bottleneck
seen in our analysis of MGPU in the previous section. This
naturally suggests the use of a multiway mergesort algo-
rithm [20] to reduce the number of merge rounds. According
to the (sequential) external memory model [2], multiway
mergesort achieves optimal I/O complexity when K = M

B ,
whereM is the size of internal memory and B is the access
block size [20]. Koike and Sadakane [21] present a multiway
mergesort for GPUs.

AlgorithmOverview–Themultiwaymergesort of Koike
and Sadakane [21] starts by sorting blocks of w elements
in internal memory (“base case”). Groups of K sorted lists
are then merged until the entire input is sorted. At each
merge round, partitions are needed if there are not enough

independent merge lists to satisfy all thread-blocks, where
each thread-block containsw = 32 threads. Since groups of
K lists are merged at each round, partitions are found across
all K lists using a search method based on K binary searches
proposed by Hayashi et al. [14].

The merging of K lists byw threads is accomplished with
the use of a variation of a minHeap structure. This struc-
ture stores 2w elements in sorted order at each node, where
all elements satisfy the heap property (every element in a
node x is smaller than every element in its children y and z).
This allows I/O-efficient reading and writing of blocks ofw
elements at a time while sorting.

Estimating performance – As with MGPU, we omit the
details of our analysis of the multiway mergesort of Koike
and Sadakane and refer interested readers to Karsin’s dis-
sertation [18] for the full analysis. We were unable to ob-
tain an implementation of the algorithm presented by Koike
and Sadakane [21], so we cannot accurately determine I.
We, therefore, assume I = 1, since, while merging, each
operation is dependent on the result of the previous opera-
tion. Each warp works on its own heap structure, requiring
4Kw − 2w elements in shared memory, limiting multiplic-
ity to X = M

4KP−2P . We estimate the execution time of the
algorithm by Koike and Sadakane [21] as:

T ≈ Tд +Ts ,

Tд ≈
2N
P

(
logK

N
w
+ 1

)
max

(
1
Bд

,

⌈
Lд
M

4KP−2P

⌉)
,

Ts ≈
4N
P

(
logw log

N
w
+

log2w
2

)
max

(
1
Bs

,

⌈
Ls
M

4KP−2P

⌉)
.

Our performance estimate indicates that, as K grows, the
relative impact of shared memory accesses increases. When
K = 32, more than 75% of the execution time is due to shared
memory accesses. Furthermore, since multiplicity decreases
with increased K , on Algoparc accesses to shared memory
and global memory become latency-bound when K ≥ 3 and
K ≥ 6, respectively.

5 GPU-MMS

The main bottlenecks for the MGPU mergesort are global
memory bandwidth and sharedmemory bank conflicts.While
the multiway mergesort proposed by Koike et al. [21] ad-
dresses these bottlenecks, its performance is limited by the
large amount of sharedmemory it accesses and lowmultiplic-
ity. In this section, we present GPU-MMS, our GPU-efficient
multiway mergesort algorithm that avoids the performance
bottlenecks of both of these algorithms.

5.1 Algorithm Overview

We use the algorithm by Koike and Sadakane [21] as a start-
ing point, but present several improvements that address

6

Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs ICS ’18, June 12–15, 2018, Beijing, China

its performance bottlenecks. In a nutshell, GPU-MMS maxi-
mizes multiplicity and ILP while reducing both shared mem-
ory and global memory accesses. We present the following
improvements over the algorithm of Koike and Sadakane [21].

Parallel heap –We first focus our design on reducing the
shared memory usage to increase X and thereby improve
performance for larger values of K . Recall that the heap used
by Koike and Sadakane stores 2w elements at each node,
requiring 4Kw − 2w elements in shared memory per heap.
We present an improved heap structure, which we call a
minBlockHeap, that requires half the shared memory, while
still allowing allw threads to work cooperatively and access
only blocks ofw elements at a time from global memory.

Each node x contains a list ofw elements (x[0], . . . ,x[w −

1]), stored in sorted order, and we define the fillEmptyNode
operation that fills an empty node (i.e., a node without any
elements in its list). Consider x to be an empty node with
non-empty children y and z. W.l.o.g. assume that y[w − 1] >
z[w − 1]. The f illEmptyNode(x) operation is performed as
follows: merge the lists of y and z, fill x with thew smallest
elements, fill y with the w largest elements, and set z as
empty. Since, prior to merging, y had the largest element
(y[w − 1]), its new largest element has not changed and the
heap property holds for y. We continue down the tree by
calling f illEmptyNode(z) until we reach a leaf, which we
fill by loading w new elements from global memory. This
structure provides two benefits over the heap used in [21]:
(i) the shared memory required to store each heap is reduced
to 2Kw −w elements and (ii) the number of elements merged
is reduced from 4w and 2w at each level. We note that, a small
K value results in a smaller heap, increasing K reduces the
total number of merge rounds. Thus K provides a tradeoff
between shared memory usage and global memory accesses.

Merging in registers – A primary drawback of using a
minBlockHeap type structure is that, since w threads are
merging pairs of w elements, a work-efficient sequential
merge cannot be used. Koike and Sadakane [21] employ
a bank conflict-free bitonic merge network [20] in shared
memory, increasing shared memory accesses by a factor
logw . To reduce the cost of this work-inefficient merge, we
develop a merge step for GPU-MMS that operates in registers.
While this causes GPU-MMS to be work-inefficient, the extra
work is done in low-latency registers that have much higher
peak bandwidth. We accomplish this register merge with the
use of __shfl(), a hardware instruction that lets threads
within a warp access each others’ registers. This enables us
to reduce the number of shared memory accesses in favor of
faster register operations.

Independent merging – In addition to increasing X we
increase I with the following optimization to the minBlock-
Heap. After we extract the smallest w elements from the
heap, allw threads working on the heap identify the path of

Figure 4 Estimated throughput of GPU-MMS, com-

pared with the measured performance on Algoparc

with N = 228 for a range of K values. Estimated

throughput also shown for Koike and Sadakane’s mul-

tiway mergesort [21].

merge nodes from the root to the leaf. This path corresponds
to the node at each level of the heap that will be emptied
during merging. Starting at the root, each thread loads one
element from each child into registers, and continues down
the path of the child with the smallest (w − 1)-th element.
There are total of logK nodes along this path, so each thread
loads a total of 2 logK elements into registers. Since each
merge operation is independent, we interleave the opera-
tions, thereby increasing I by a factor logK . This comes at
the cost of using additional registers. However, this is not
an issue on our hardware, so shared memory remains the
primary factor limiting multiplicity.

Increased base case – MGPU mergesort sorts its base
case of tE elements using pairwise mergesort, though this
results in bank conflicts, reducing performance. Koike and
Sadakane [21] avoid bank conflicts in the base case by letting
each thread sortw elements within its own memory bank,
resulting in smaller base case. We increase the base case
by sorting w2 items in shared memory by using the bank
conflict-free algorithm of Afshani and Sitchinava [1].

5.2 Performance Analysis

Aside from reducing shared memory accesses by a factor
logw , GPU-MMS does not significantly improve asymptotic
performance over [21]. However, GPU-MMS improves many
of the constant factors that have a practical impact on execu-
tion time. Though we omit details due to limited space, our
analysis of accesses to each type of memory results in:

T ≈ Tд +Ts +Tr ,

Tд ≈
2N
P

(⌈
logK

N
w2

⌉
+ 1

)
max

(
1
Bд

,

⌈
Lд

XI

⌉)
,

Ts ≈
4N
P

(⌈
log

N
w2

⌉
+ logw

)
max

(
1
Bд

,

⌈
Lд

XI

⌉)
,

Tr ≈
6N
P

(⌈
log

N
w2

⌉
logw + log3w

)
max

(
1
Bд

,

⌈
Lд

XI

⌉)
,

7

ICS ’18, June 12–15, 2018, Beijing, China B. Karsin et al.

Figure 5 Comparison of average throughput for each sorting algorithm (CUB radix sort [26], Thrust [15] and

MGPU [3] pairwisemergesort, GPU samplesort [8], and our GPU-MMSmultiwaymergesort) on inputs of random

integers on Algoparc (left), Gibson (middle), and Uhhpc (right). The E = 31 plot refers to MGPU while setting

E = 31, rather than the standard E = 15.

where Tr is the time spent performing computations in reg-
isters. Note that we require 6N register accesses per merge
round due to the merge network requiring 3 operations:
__shfl(), min(), and max(). Furthermore, the use of a merg-
ing network means that GPU-MMS is not work-efficient, as
mergingw elements takesO(w logw)work. Note that thew2

is due to the increased size of the base case. Since our heap
uses less memory, multiplicity is increased to X = M

2KP−P .
Furthermore, independent merging increases I to logK .
Figure 4 shows our performance estimate and measured

execution time of our GPU-MMS implementation, on Al-
goparc, for N = 228 and varying values of K . We also
show a performance estimate for the algorithm of Koike and
Sadakane [21] to illustrate the impact of the improvements
included in GPU-MMS. Results indicate that these improve-
ments significantly increase overall performance, especially
when K is larger. However, even with the increased X and
I, the ideal value of K is still either 8 or 16 on Algoparc.
On our other two hardware platforms, both our analysis and
empirical results indicate that K = 8 leads to the best perfor-
mance. Thus, in all that follows we use K = 16, K = 8, and
K = 8 on Algoparc, Gibson, and Uhhpc, respectively, un-
less otherwise noted. To verify that our GPU-MMS algorithm
does not suffer from the performance bottlenecks that we
see with MGPU mergesort and Koike and Sadakane’s multi-
way mergesort [21], we consider the estimated percentage
of overall runtime due to each component of execution. Our
performance estimate indicates that, unlike MGPU merge-
sort and Koike and Sadakane’s mergesort, no single type of
operation dominates execution time. Furthermore, register
operations make up a significant portion of overall execution
time (35%), indicating that GPU-MMS performance is not
bound by high-latency memory accesses.

6 EXPERIMENTAL COMPARISONS

The analysis and results in the previous section indicate
that our GPU-MMS algorithm provides key advantages over

the Thrust and MGPU pairwise mergesorts, as well as the
multiway mergesort presented by Koike and Sadakane [21].
While we were unable to get code for the algorithm in [21],
the improvements outlined in the previous section and an-
alytical results illustrated in Figure 4 indicate that GPU-
MMS should outperform [21] in all cases. We compare GPU-
MMS performance with three leading GPU sorting libraries:
Thrust 1.8.1 [15], MGPU 2.10 [3], and CUB 1.6.4 [26]. As
discussed in Section 4, Thrust and MGPU provide two of
the fastest comparison-based sorts available for GPUs, while
CUB provides the fastest radix sort. Although CUB is not a
comparison-based sort (limitations discussed in Section 1),
we include it in some of our experiments for completeness.
We also include the I/O-efficient samplesort implementation
of [23] in some of our experiments.

6.1 Sorting Random Integers

Figure 5 shows the average throughput achieved by each
algorithm when applied to random inputs of 4-byte integers,
on each of our hardware platforms. These results show that
GPU-MMS outperforms all other comparison-based sorting
algorithms for all input sizes. As expected, CUB, being a radix
sort, achieves much higher throughput across all input sizes.
On Algoparc, GPU-MMS outperforms MGPU an average of
32.27%, across all input sets. Even when using the improved
value of E = 31 for MGPU (as determined by our analysis
in Section 4.1), GPU-MMS still outperforms MGPU for most
input sets. On Gibson and Uhhpc, GPU-MMS is 23.26% and
11.48% faster than MGPU, respectively. We note that, unlike
on Algoparc, for Gibson and Uhhpc, MGPU performs best
when using the hard-coded E = 11 value.

6.2 Impact of Bank Conflicts

A feature of GPU-MMS is that, regardless of input, it is free of
shared memory bank conflicts. MGPU and Thrust, however,
have memory access patterns that depend on the input and
may therefore result in bank conflicts. Since the memory

8

Analysis-driven Engineering of Comparison-based Sorting Algorithms on GPUs ICS ’18, June 12–15, 2018, Beijing, China

Figure 6Average throughput vs. input size for conflict-
heavy input on the Gibson platform.

access patterns of MGPU and Thrust are deterministic, by
carefully analyzing the access patterns of the algorithm, we
generate a conflict-heavy input permutation that will cause
these algorithms to incur large numbers of bank conflicts, for
a given E. Since the optimal values of E may differ, we create
conflict-heavy inputs specifically for each value of E (11 and
15). Figure 6 shows the average throughput achieved when
sorting a conflict-heavy input set on the Gibson platform.
These results indicate that both Thrust and MGPU suffer
from significant performance degradation due to bank con-
flicts on the conflict-heavy input, while GPU-MMS achieves
performance similar to a random input sequence. On these
conflict-heavy inputs, GPU-MMS is, on average, 71.1%, 68.3%,
and 54.6% faster than MGPU (67.2%, 63.4%, and 49.5% faster
than Thrust) onAlgoparc, Gibson, and Uhhpc, respectively.

6.3 Sorting Other Data Types

As seen from Figure 5, the CUB radix sort implementation
significantly outperforms all comparison-based sorting al-
gorithms, including GPU-MMS. However, as discussed in
Section 1, it is not always possible to use radix sort efficiently.
In this section we present an experimental comparison of
MGPU and GPU-MMS when sorting more complex data
types using user-defined comparison functions. We consider
sorting (a) key-value pairs, (b) points in the plane using l1
norm (Manhattan distance) from the origin, and (c) rational
numbers. Each of the three data types are stored as objects of
two 32-bit integers x and y. The relative order of two objects
(x1,y1) and (x2,y2) is resolved according to the outcome of
comparing (a) x1 and x2, (b) |x1 | + |y1 | and |x2 | + |y2 |, and (c)
x1 · y2 and x2 · y2.

There are two factors that affect the performance of GPU-
MMS on these data types. First, recall that GPU-MMS mini-
mizes accesses to global memory by increasing utilization of
shared memory, which is parameterized by K – the number
of sequences being merged simultaneously. By increasing
the size of the data types from a single integer to pairs of
integers (or 32-bit floating point numbers), we effectively

Figure 7 Average throughput vs. input size when sort-

ing: key-value pairs, (x ,y) coordinates by their l1 dis-

tance from origin, and rational numbers, represented

as integer numerator and denominator pairs.

reduce the shared memory size by a factor of 2. Thus, larger
data types force GPU-MMS to use a smaller value of K to
maintain adequate multiplicity. This increases the number
of merge rounds and potentially degrades GPU-MMS’s per-
formance. MGPU, on the other hand, uses a small amount
of shared memory and must perform a suboptimal O(logN)

number of merge rounds, regardless of the size of the data
types. Second, recall that, while MGPU’s performance is pri-
marily bounded by global memory accesses (Section 4.1),
GPU-MMS is nearly-perfectly balanced between computa-
tions and global memory accesses (Section 5.2). As a result,
the performance impact of increasing the cost of each com-
parison will be more apparent for GPU-MMS than MGPU.
Figure 7 plots the average throughput of GPU-MMS and

MGPU when sorting random inputs of each of the datatypes
we consider, on Gibson. When sorting key-value pairs, de-
spite the increased memory requirement (and decrease in
K) we observed that GPU-MMS still outperforms MGPU
on all input sizes by an average of 15.8%, 13.5%, and 12.3%
on Algoparc, Gibson, and Uhhpc, respectively. We note
that, since the value can be defined as a pointer to an ar-
bitrary object, this experiment encompasses values of any
data type. When sorting by the l1 norm, GPU-MMS is on
average, 6.6% and 1.5% faster, and 4.6% slower than MGPU on
Gibson, Uhhpc, and Algoparc, respectively. When sorting
fractions, MGPU outperforms GPU-MMS by an average of
just 0.6%, 3.1%, and 5.4% on Gibson, Uhhpc, and Algoparc,
respectively. As expected, since MGPU is memory-bound,
the increased computation has less of an impact on MGPU’s
overall performance. Nevertheless, GPU-MMS remains com-
petitive. This performance loss due to increased computation
during a comparison confirms that GPU-MMS is not memory
bound and makes more balanced use of the massive compute
capabilities of modern GPUs.

9

ICS ’18, June 12–15, 2018, Beijing, China B. Karsin et al.

7 CONCLUSIONS

Thiswork demonstrates that even state-of-the-art GPU-efficient
algorithm may suffer from avoidable performance bottle-
necks. Analytical frameworks and theoretical models let us
identify these bottlenecks and develop new, more effective
algorithms. Furthermore, these models let us study how hard-
ware changes would impact runtimes. Our analysis shows
that a larger shared memory size would increase the relative
performance improvement of GPU-MMS over MGPU. The
latest NVIDIA architectures provide larger shared memory
sizes than their predecessors. Thus, we expect GPU-MMS to
outperform MGPU by larger margins on future systems.

While we focus on comparison-based sorting algorithms,
the analytical techniques presented in this work are general
enough that they may be useful for developing other GPU-
efficient algorithms. In particular, the relationship between
latency, bandwidth, and parallelism are key to achieving peak
GPU performance, regardless of the algorithm itself. Along
these lines, we have continued this work and applied this an-
alytical framework to the problem of general matrix-matrix
multiplication and determined that the currently available
library implementation [34] achieves optimal performance
on our GPU platforms [18].

REFERENCES

[1] Peyman Afshani and Nodari Sitchinava. Sorting and permuting with-
out bank conflicts on GPUs. In Proc. of ESA, pages 13–25, 2015.

[2] A. Aggarwal and J.S. Vitter. The input/output coplexity of sorting and
related problems. Commun. ACM, 31(11), 1988.

[3] S. Baxter. Modern GPU. URL: http://nvlabs.github.io/moderngpu/.
[4] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.

Computational Geometry: Algorithms and Applications. Springer-Verlag
TELOS, Santa Clara, CA, USA, 3rd ed. edition, 2008.

[5] N. Bombieri, F. Busato, and F. Fummi. A fine-grained performance
model for GPU architectures. In Proc. of Design, Automation & Test in
Europe, pages 1267–1272, 2016.

[6] Bryan Catanzaro, Alexander Keller, and Michael Garland. A decompo-
sition for in-place matrix transposition. In Proc. of PPoPP, 2014.

[7] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill, 2nd edition, 2001.

[8] Frank Dehne and Hamidreza Zaboli. Deterministic sample sort for
GPUs. CoRR, abs/1002.4464, 2010.

[9] Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and J. Manfedelli.
Fast scan algorithms on graphics processors. In Proc. of ICS, pages
205–213, 2008.

[10] P. Enfedaque, F. Auli-Llinas, and J.C. Moure. Implementation of the
DWT in a GPU through a register-based strategy. IEEE Trans. PDS,
26(12):3394–3406, 2015.

[11] N. Fauzia, L. N. Pouchet, and P. Sadayappan. Characterizing and
enhancing global memory data coalescing on GPUs. In Proc. of CGO,
pages 12–22, 2015.

[12] Oded Green, Robert McColl, and David A. Bader. GPU merge path: a
GPU merging algorithm. In Proc. of ICS, pages 331–340, 2012.

[13] Oded Green, Saher Odeh, and Yitzhak Birk. Merge path - A visually
intuitive approach to parallel merging. CoRR, abs/1406.2628, 2014.

[14] Tatsuya Hayashi, Koji Nakano, and Stephan Olariu. Weighted and
unweighted selection algorithms for k sorted sequences. In Proc. of

International Symp. on Algorithms and Computation, pages 52–61, 1997.
[15] Jared Hoberock and Nathan Bell. Thrust: A parallel template library,

2010. Version 1.7.0. URL: http://thrust.github.io/.
[16] S. Hong and H. Kim. An analytical model for a GPU architecture with

memory-level and thread-level parallelism awareness. In Proc. of ISCA,
pages 152–153, 2009.

[17] K. Kaczmarski. Experimental B+-tree for GPU. In Proc. of ADBIS,
volume 2, pages 232–241, Rome, Italy, 2011.

[18] Ben Karsin. A performance model for GPU architectures: analysis and
design of fundamental algorithms. PhD thesis, University of Hawaii,
2018.

[19] Ben Karsin, Henri Casanova, and Nodari Sitchinava. Efficient batched
predecessor search in shared memory on GPUs. In Proc. of HiPC, pages
335–344, 2015.

[20] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd
Ed.) Sorting and Searching. Addison Wesley Publishing Co., Inc., 1998.

[21] A. Koike and K. Sadakane. A novel computational model for GPUs with
applications to efficient algorithms. International Journal of Networking
and Computing, 5(1):26–60, 2015.

[22] K. Kothapalli, R. Mukherjee, S. Rehman, S. Patidar, P. Narayanan, and
K. Srinathan. A performance prediction model for the CUDA GPGPU.
In Proc. of HiPC, 2009.

[23] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In Proc. of
IPDPS, pages 1–10, April 2010.

[24] L. Ma, R.D. Chamberlain, and K. Agarwal. Performance modeling for
highly-threaded many-core GPUs. In Proc. of ASAP, 2014.

[25] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access
model for highly-threaded many-core architectures. Future Generation
Computer Systems, 30:202–115, 2014.

[26] D. Merrill. CUB: CUDA Unbound. URL: http://nvlabs.github.io/cub/.
[27] Duane Merrill and Andrew Grimshaw. Parallel Scan for Stream Ar-

chitectures. Technical Report CS2009-14, Department of Computer
Science, University of Virginia, 2009.

[28] Duane G. Merrill and Andrew S. Grimshaw. Revisiting sorting for
GPGPU stream architectures. In Proc. of PACT, pages 545–546, 2010.

[29] Bruce Merry. A performance comparison of sort and scan libraries for
GPUs. Parallel Processing Letters, 4, 2016.

[30] K. Nakano. Simple memory machine models for GPUs. In Proc. of
IPDPSW, pages 794–803, 2012.

[31] K. Nakano. The hierarchical memory machine model for GPUs. In
Proc. of IPDPSW, pages 591–600, 2013.

[32] NVIDIA. Nsight, 2015. URL: http://nvidia.com/object/nsight.html.
[33] NVIDIA. CUDA guide 9.0, 2017. URL: http://docs.nvidia.com/cuda.
[34] NVIDIA. CUDA cuBLAS library, 2018. URL: http://docs.nvidia.com/

cuda/cublas/.
[35] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone,

David B. Kirk, and Wen-mei W. Hwu. Optimization principles and
application performance evaluation of a multithreaded GPU using
CUDA. In Proc. of PPoPP, pages 73–82. ACM, 2008.

[36] Shubhabrata Sengupta, Mark Harris, and Michael Garland. Efficient
parallel scan algorithms for GPUs. NVIDIA Technical Report, 2008.

[37] A. Shekhar. Parallel binary search trees for rapid IP lookup using
graphic processors. In Proc. of IMKE, pages 176–179, 2013.

[38] Nodari Sitchinava and Volker Weichert. Provably efficient GPU algo-
rithms. CoRR, abs/1306.5076, 2013.

[39] Jyothish Soman, Kishore Kothapalli, and P. J. Narayanan. Discrete
range searching primitive for the GPU and its applications. J. Exp.
Algorithmics, 17:4.5:4.1–4.5:4.17, 2012.

[40] H. Wong. Demystifying GPU microarchitecture through microbench-
marking. In Proc. of ISPASS, pages 235–246, 2010.

[41] Y. Zhang and John D. Owens. A quantitative performance analysis
model for GPU architectures. In Proc. of HPCA, pages 382–393, 2011.

10

http://nvlabs.github.io/moderngpu/
http://thrust.github.io/
http://nvlabs.github.io/cub/
http://nvidia.com/object/nsight.html
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda/cublas/
http://docs.nvidia.com/cuda/cublas/

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 GPU Performance Factors
	3.1 Experimental Methodology
	3.2 Parallelism and Memory Performance
	3.3 Bank Conflicts

	4 State-of-the-art GPU sorting
	4.1 MGPU Mergesort
	4.2 Koike and Sadakane's Multiway Mergesort

	5 GPU-MMS
	5.1 Algorithm Overview
	5.2 Performance Analysis

	6 Experimental Comparisons
	6.1 Sorting Random Integers
	6.2 Impact of Bank Conflicts
	6.3 Sorting Other Data Types

	7 Conclusions
	References

