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Abstract

Let T be a terrain, and let P be a set of points
(locations) on its surface. An important problem in
Geographic Information Science (GIS) is computing
the visibility index of a point p on P , that is, the
number of points in P that are visible from p.
The total visibility-index problem asks for computing
the visibility index of every point in P . Most
applications of this problem involve 2-dimensional
terrains represented by a grid of n × n square cells,
where each cell is associated with an elevation value,
and P consists of the center-points of these cells.
Current approaches for computing the total visibility-
index on such a terrain take at least quadratic
time with respect to the number of the terrain
cells. While finding a subquadratic solution to
this 2D total visibility-index problem is an open
problem, surprisingly, no subquadratic solution has
been proposed for the one-dimensional (1D) version
of the problem; in the 1D problem, the terrain is an
x-monotone polyline, and P is the set of the polyline
vertices.

We present an O(n log2 n) algorithm that solves
the 1D total visibility-index problem in the RAM
model. Our algorithm is based on a geometric dual-
ization technique, which reduces the problem into a set
of instances of the red-blue line segment intersection
counting problem. We also present a parallel version
of this algorithm, which requires O(log2 n) time and
O(n log2 n) work in the CREW PRAM model. We im-
plement a naive O(n2) approach and three variations
of our algorithm: one employing an existing red-blue
line segment intersection algorithm and two new ap-
proaches that perform the intersection counting by
leveraging features specific to our problem. We present
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experimental results for both serial and parallel imple-
mentations on large synthetic and real-world datasets,
using two distinct hardware platforms. Results show
that all variants of our algorithm outperform the naive
approach by several orders of magnitude on large
datasets. Furthermore, we show that our new inter-
section counting implementations achieve more than 8
times speedup over the existing red-blue line segment
intersection algorithm. Our parallel implementation
is able to process a terrain of 224 vertices in under 1
minute using 16 cores, achieving more than 7 times
speedup over serial execution.

1 Introduction

Analyzing terrains to determine locations with spe-
cial properties is a common objective in Geographic
Information Science (GIS). An important property
concerns visibility. In particular, one often wants to
find points on a terrain that are highly visible or,
conversely, points that are hardly visible. Examples
include placement of telecommunication towers, place-
ment of fire guard towers, survey of archaeological
sites, military logistics, or survey of building sites.
Thus, in recent years there has been a fair amount of
work in the GIS literature dedicated to visibility anal-
ysis and the computations it entails (see the survey by
Floriani and Magillo [11]), with many proposed algo-
rithms [9,10,12,15,22,23] as well as publicly available
implementations [1, 2].

To automate terrain analysis, real-world terrains
are approximated by digital models, with one of
the most popular models being the digital elevation
model (DEM). Here a cell c′ is visible from a cell c
if the point on the terrain surface corresponding to
the center of c′ is visible from the point on the terrain
surface corresponding to c.

Let terrain T be a grid with N = n2 total
cells. We define the visibility index of cell c to
be the number of cells in T that are visible from
c. The total visibility-index problem (also known as
cumulative viewshed [24]) is to find the visibility index
for every c ∈ T . One way to solve the total visibility-
index problem on T is to compute the viewshed



of each cell c of T , that is, to explicitly compute
for each cell c which other cells of T are visible
from c. With the algorithm of Van Kreveld [23] this
takes O(N logN) time per cell, leading to a total
running time of O(N2 logN). Even for moderately-
sized DEMs this is infeasible, let alone for modern
DEM datasets, which easily consist of hundreds of
millions of cells. One way to deal with this is to use
a heuristic that approximates the visibility [10, 22].
Another is to observe that computing the viewsheds
of different cells can be done independently, and to
apply the parallel execution of a large number of
single-viewshed computations [6, 8, 17, 18, 25]. Still,
such approaches are not suitable for large DEMs. The
fundamental problem is that one cannot afford to
explicitly compute all visible cells for any cell c of T ,
as this may produce an output of size Ω(N2). Thus
we need to leverage the fact that we do not need to
compute which cells are visible (the viewshed) but we
only need to compute how many cells are visible from
each cell, reducing the output size to linear. However,
so far no subquadratic algorithms to solve the 2D
total visibility-index problem exist.

Thus, the efficient computation of the total
visibility-index of a 2D terrain remains an open
problem. Surprisingly, no efficient algorithm has been
proposed even for the 1D version of the problem.
In the 1D problem, the terrain T is an x-monotone
polyline with n vertices. Similar to the 2D problem,
the goal in the one-dimensional version is to compute
for each vertex v in the polyline the number of vertices
visible from v. We call this problem the 1D total
visibility-index problem. Note that on a 1D terrain T
with n vertices, the visibility-index of a single vertex
v can be computed in Θ(n) time; this could be done
by moving away from v one vertex at a time, and
maintaining two rays that define the horizon to the
left and right of v. Using this method to compute
the visibility-index for each vertex independently, we
can compute the total visibility-index of T in O(n2)
time. We refer to this simple algorithm as Naive.
Despite its simplicity and disappointing quadratic
performance, to the best of our knowledge, this is the
best known solution for this problem to date.

Several previous works have looked a variant of the
1D total visibility-index problem, known as the 1.5D
terrain guarding problem (TGP). The terrain guarding
problem involves finding the minimum number of
guards needed to view an entire 1-dimensional set of
vertices. While similar to the total visibility-index,
solving TGP is known to be NP-hard and thus all
works provide approximate solutions [13, 14, 19]. This
work, however, presents an exact solution to the 1D

total visibility-index problem.
Our contributions. In this paper, we present

an algorithm that solves the 1D total visibility in-
dex problem for a terrain of n vertices in O(n log2 n)
time. Our algorithm uses a geometric dualization
technique, which transforms the visibility problem
into a set of instances of the 2D red-blue line segment
intersection counting problem. In fact, we show that
the instances of red-blue segments that we have to
process have characteristics that allow us to develop
a simpler algorithm for counting intersections. This
new intersection-counting algorithm performs faster
in practice than existing generic solutions. We also
show how to parallelize our algorithm while keeping
the overall work (time-processor product) the same.
In particular, we present an adaptation of our algo-
rithm in the CREW PRAM model [16], which requires
O(log2 n) time and O(n log2 n) work. We implement
a naive O(n2) implementation, as well as three varia-
tions of our algorithm: RedBlue employs an existing
red-blue segment intersection counting algorithm [21],
while Sweep and ParAoT implement two versions of
our new intersection counting technique. Furthermore,
ParAoT implements the parallel adaptation of our
algorithm, allowing it to utilize a variable number of
execution threads to improve performance.

We evaluate the performance of our implementa-
tions on large synthetic and real-world datasets, show-
ing that all three implementations of our algorithm
outperform the naive solution by several orders of mag-
nitude. Additionally, we show that implementations
employing our new intersection counting algorithm
provide a maximum speedup of 8.25 over the exist-
ing solution. We provide a detailed analysis of the
performance of our parallel implementation on two
hardware platforms. Results indicate that our parallel
implementation is capable of processing 224 vertices in
54.15 seconds, providing a maximum parallel speedup
of 7.25 using 16 cores.

2 Preliminaries

Let T [1..n] be a one-dimensional terrain, that is an
array of cells in R1. Element T [i] stores the elevation
hi of the i-th cell of the terrain. The array T defines
an x-monotone polyline obtained by connecting the
vertices pi := (i, hi) for i = 1, . . . , n in order. Let
P = (p1, p2, . . . , pn) denote the set of these vertices
ordered by their x-coordinates, and let P [l : r] denote
the subset of vertices (pl, . . . , pr)–see Figure 1 for an
example. We say that a vertex pj is visible from pi (pi
sees pj), if all vertices pk between pi and pj lie strictly
below the segment pipj . Based on this definition,
we conclude that a vertex is visible from itself, and
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Figure 1: Illustration of an 1-dimensional terrain, together with the critical rays from vertex pi.

if vertex pj is visible from vertex pi, then pi is also
visible from pj . We define the visibility ray from pi
to pj , denoted −−→pipj , as the ray that starts at pi and
passes through pj . Note that every vertex is visible to
itself and its neighbors and we define the visibility ray
between pi and pi as pointing vertically down. Let
νvert(pi) denote the ray that starts at pi and points
vertically up. We define the angle of the visibility ray−−→pipj as the smallest angle between −−→pipj and νvert(pi).
We use α(−−→pipj) to denote this angle.

One of the key concepts that we use in our analysis
is that of the critical ray. Let l, i, and r be three
positive integers such that l ≤ i ≤ r ≤ n. The left
critical ray of point pi with respect to P [l : r], is the
visibility ray −−→pips with the smallest α(−−→pips) among
all rays −−→pipk with l ≤ k ≤ i. We denote this ray
by cleft(pi, P [l : r]). If i = l then cleft(pi, P [l : r]) is
defined as the ray pointing vertically down from pi.
The right critical ray, denoted cright(pi, P [l : r]), of pi
is the visibility ray −−→pipt (i ≤ t ≤ r) with the smallest
α(−−→pipt) (or pointing vertically down from pi if i = r).
See Figure 1 for an illustration of these rays. We can
use critical rays to determine visibility between two

points, as the following lemma shows.

Lemma 2.1. Two points pi ∈ P [l : k] and pj ∈
P [k + 1 : r] are visible from each other if and only
if pi is above cleft(pj , P [k + 1 : r]) and pj is above
cright(pi, P [l : k]).

Proof. Let cright := cright(pi, P [l : k]) be the right
critical ray of pi and let cleft := cleft(pj , P [k + 1 : r])
be the left critical ray of pj . Consider the line segment
pipj . Assume that pi is above cleft and that pj is above
cright. Then all points P [i : k] are below pipj , because
cright has the smallest angle. Symmetrically, all points
P [k + 1 : j] are below pipj , due to cleft. Hence pi
and pj are visible from each other. Now assume that
pi and pj are visible from each other. That means
that all points P [i + 1 : j − 1] are below pipj . All
points that can possibly determine cright and cleft are
therefore also below pipj . Hence pi is above cleft and
pj is above cright.

Figure 2 illustrates the intuition behind the
previous lemma. Note that, while we use the
restriction that points are strictly above critical rays

pj
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pipjpi
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cleft(pj)

Figure 2: Illustration of the intuition behind Lemma 2.1. Left: example where both points are above critical
rays. Right: example where a point is below a critical ray.



to allow visibility, this is an implementation detail.
Changing our visibility definition to include equality
would not change the overall algorithm design or
performance.

3 Description of the Algorithm

Let T be a one-dimensional terrain and let P be the set
of its vertices. To compute the total visibility-index
on T , we consider the following divide-and-conquer
approach: first, we split the input polyline P into two
subsets of equal size, and we recursively continue this
process, until we end up with subsets that consist of
a single vertex. After computing the total visibility-
index for these trivial cases (all vertices are visible
to their neighbors), we move up in the hierarchy of
recursive calls. At each step, we combine the results
that we computed for two consecutive subsets P [l : k]
and P [k + 1 : r] to produce the total visibility-index
for subset P [l : r]. For each subset that we process,
together with computing the visibility-index for each
vertex p in the subset, we also construct the left and
right critical ray of p with respect to this subset. At
any point during this recursive execution, we use an
array VisIndex such that VisIndex [i ] stores the total
visibility-index of pi computed in all previous levels
of recursion. Suppose that, at some point during
this recursion, we have already calculated the total
visibility-index for two subsets P [l : k] and P [k+1 : r],
and we need to produce the result for their union
P [l : r]. To do this, we need to compute for each
pi ∈ P [l : k] the number of vertices of P [k+1 : r] which

are visible to pi and add this number to VisIndex [i ];
similarly, for each pj ∈ P [k+1 : r] we need to compute
the number of points of P [l : k] that are visible from
pj and add this to VisIndex [j ].

We refer to the problem of computing the number
of visible vertices only between elements of two
distinct subsets P [l : k] and P [k + 1 : r], as
Bipartite Visibility. We denote the entire divide-
and-conquer algorithm that computes the visibility
index of P as 1DVisibilityIndex. The runtime of
1DVisibilityIndex on P is given by the recurrence
τ(n) = 2τ(n/2) + f(n), where f(n) is the time it
takes to solve Bipartite Visibility for P [1 : n/2] and
P [n/2+1 : n]. Therefore, the algorithmic performance
of this divide-and-conquer approach depends on an
efficient solution for Bipartite Visibility. We next
focus on describing an algorithm that solves Bipartite
Visibility in O(n log n) time.

Let P [l : k] and P [k + 1 : r] be two parts of
the terrain for which we want to solve Bipartite
Visibility. Recall that for all vertices in P [l : k] we
have already computed the right critical rays with
respect to P [l : k], and for all vertices in P [k + 1 : r]
we have computed the left critical rays with respect
to P [k + 1 : r]. Let pi be a vertex in P [l : k], and let
pj be a vertex in P [k + 1 : r]. Recall that, according
to Lemma 2.1, vertices pi and pj are visible to each
other if both pj lies above the right critical ray of pi,
and pi lies above the left critical ray of pj . Therefore,
to compute the number of vertices in P [k+ 1 : r] that
are visible from pi, we could explicitly check if this

Algorithm 1 1DVisibilityIndex (P, l, r, VisIndex, CriticalRays)

Input: array P of n points pi with elevations and two indices l and r.
Input: V isIndex[1..n], where V isIndex[i] denotes the visibility index of vertex pi before the call.
Output: V isIndex[i] = number of visible vertices in P [l : r] for vertex pi with l ≤ i ≤ r.
Output: CriticalRays[i].left = cleft(pi, P [l : r]) for l ≤ i ≤ r.
Output: CriticalRays[i].right = cright(pi, P [l : r]) for l ≤ i ≤ r.
if l = r then

Set V isIndex[l] = 1
Set CriticalRays[l].left and CriticalRays[l].right to be rays pointing downward

end

k ← b r−l2 c+ l
1DVisibilityIndex (T, l, k, V isIndex,CriticalRays)
1DVisibilityIndex (T, k + 1, r, V isIndex,CriticalRays)
R ← {ρ(pi, P [l : k]) : l ≤ i ≤ k}, B ← {β(pi, P [k + 1 : r]) : k + 1 ≤ i ≤ r}
Count (for each half-line) the intersections between R and B using RedBlueIntersectionCount
(R,B, V isIndex)
Update V isIndex with intersection counts
Update CriticalRays[i].right for every l ≤ i ≤ k
Update CriticalRays[i].left for every k + 1 ≤ i ≤ r



condition holds for each pj in P [k+1 : r]. This method,
however, is inefficient as it requires that we check all
possible pairs of vertices pi, pj s.t. pi ∈ P [l : k] and
pj ∈ P [k + 1 : r].

We improve on this naive solution by using
geometric duality [5]. Instead of handling the actual
critical rays of the input points, we project these rays
onto a dual plane: we construct exactly one dual half-
line for the right critical ray of each vertex in P [l : k],
and one dual half-line for the left critical ray of each
vertex in P [k + 1 : r]. We refer to the duals of the
right critical rays as the red half-lines, and the duals
of the left critical rays as the blue half-lines. We detail
the construction of these dual half-lines in Section 3.1.
For now, we claim that we can construct the dual half-
lines in such a way that the following property holds;
a vertex pi in P [l : k] and a vertex pj in P [k + 1 : r]
are visible if and only if the duals of their critical rays
intersect. Hence, to compute the number of vertices
in P [k + 1 : r] that are visible from pi, it suffices to
count the number of blue half-lines that intersect with
the dual of cright(pi, P [l : r]) (which is a red half-line).
Thus, to solve this instance of Bipartite Visibility,
we need to count, for each red and each blue dual
half-line, the number of intersections that it induces
with half-lines of the opposite color. In Section 3.1 we
describe how we can do this efficiently in O(n log n)
time.

In addition to computing Bipartite Visibility, at
each recursive step of 1DVisibilityIndex, the criti-
cal rays of each vertex must be correctly set with re-
spect to the subset containing it (e.g., P [l : k]). There-
fore, after computing Bipartite Visibility between
P [l : k] and P [k + 1 : r], we must update the critical
rays of each vertex with respect to P [l : k]∪P [k+1 : r].

We detail the process of updating critical rays in Sec-
tion 3.3. The remainder of the current section de-
tails the steps of 1DVisibilityIndex, with the pseu-
docode of the overall algorithm in Algorithm 1. In
Section 3.1 we explain how we solve Bipartite Visi-
bility by adapting an existing red-blue line segment
intersection counting algorithm. We improve on this
in Section 3.2, presenting our new, simpler algorithm
to solve Bipartite Visibility. In Section 3.3 we describe
a fast method of updating critical rays of each vertex
at each recursive step.

The approach that we describe for Bipartite
Visibility is similar to the method used by Ben-Moshe
et al. [4] for computing the visibility graph between a
set of points inside a polygon. However, since their
goal is to construct the actual visibility graph (which
can have quadratic size with respect to the input),
they use an output-sensitive approach which is much
slower than the methods that we describe for counting
red-blue segment intersections.

3.1 Constructing Dual Rays and Counting
Red-Blue Intersections In this section we describe
how we utilize duality to reduce the Bipartite Visibility
problem to red-blue line segment intersection counting
problem. We can thereby solve it using existing
methods.

The dual of a point pi : (i, hi) is the line p∗i : y =
ix−hi, and the dual of a line l : y = ax+b is the point
l∗ : (a,−b). Let P [l : r] be a subset of consecutive
vertices in the input terrain. Consider vertex pi ∈
P [l : r] with the critical rays cright(pi, P [l : r]) and
cleft(pi, P [l : r]) lying along the lines y = arx+ br and
y = alx+ bl, respectively. Figure 3 illustrates how we
apply duality to critical rays.
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Figure 3: An example of a terrain, its critical rays and their corresponding dual half-lines.



Let ρ(pi, P [l : r]) be the dual of the set of lines
which pass through pi and have slopes strictly larger
than ar and let β(pi, P [l : r]) be the dual of the
set of lines which pass through pi and with slopes
strictly smaller than al. Note that for pi = (i, hi),
the dual objects ρ(pi, P [l : r]) and β(pi, P [l : r]) are
collinear half-lines supported by the line y = ix− hi
(of positive slope, because 1 ≤ i ≤ n). However,
ρ(pi, P [l : r]) is defined over x ∈ (ar,+∞), thus its
endpoint is c∗right = (ar,−br) and it extends to +∞,
while β(pi, P [l : r]) is defined over x ∈ (−∞, al),
thus its endpoint is c∗left = (al,−bl) and it extends to
−∞. Also note, that the half-lines are defined over
open intervals (ar,+∞) and (−∞, al), therefore, the
endpoints c∗right and c∗left do not belong to the half-
lines ρ(pi, P [l : r]) and β(pi, P [l : r]), respectively.
Refer to Figure 3 for an example.

Lemma 3.1. Given two points pi ∈ P [l : k] and pj ∈
P [k+ 1 : r] and the critical rays cright(pi, P [l : k]) and
cleft(pj , P [k + 1 : r]), pi and pj are visible from each
other if and only if there is an intersection between
dual half-lines ρ(pi, P [l : k]) and β(pj , P [k + 1 : r]).

Proof. Suppose pi and pj are visible from each other.
Consider the line l that passes through pi and pj . The
dual of l is a point l∗. By Lemma 2.1, pi must be
above cleft(pj , P [k + 1 : r]). Therefore, the slope of l
must be smaller than the slope of cleft(pj , P [k+ 1 : r])
and, consequently, l∗ ∈ β(pj , P [k + 1 : r]). Similarly,
by Lemma 2.1, pj must be above cright(pi, P [l : k]).
Therefore, the slope of l must be larger than the slope
of cright(pi, P [l : k]) and, consequently, l∗ ∈ ρ(pi, P [l :
k]). Since dual point l∗ belongs to both dual half-lines,
they must be intersecting at l∗.

Suppose β(pj , P [k + 1 : r]) and ρ(pi, P [l : k])
intersect at the dual point q∗. The dual point q∗

corresponds to a line q that goes through both pi and
pj . Since q∗ ∈ ρ(pi, P [l : k]), the slope of q must
be larger than the slope of cright(pi, P [l : k]), i.e. pj
must be above cright(pi, P [l : k]). Similarly, since
q∗ ∈ β(pj , P [k+ 1 : r]), the slope of q must be smaller
than the slope of cleft(pj , P [k+ 1 : r]), i.e., pi must be
above cleft(pj , P [k + 1 : r]). Therefore, by Lemma 2.1
pi and pj are visible from each other.

Lemma 3.1 allows us to solve the Bipartite
Visibility problem by computing for each dual half-line
β(pj , P [k + 1 : r]), how many half-lines ρ(pi, P [l : k])
it intersects, and vice versa. The next lemma is
important for finding an efficient intersection counting
algorithm.

Lemma 3.2. Let pi and pj, i 6= j, be two points in
P [l : k]. Then the dual half-lines ρ(pi, P [l : k]) and

ρ(pj , P [l : k]) do not intersect. Similarly, β(pi, P [l :
k]) and β(pj , P [l : k]) do not intersect.

Proof. Suppose for the sake of contradiction that
ρ(pi, P [l : k]) and ρ(pj , P [l : k]) do intersect, which
means that there is a visibility line pipj between the
pi and pj (in the primal plane). It also means that
both cright(pi, P [l : k]) and cright(pj , P [l : k]) fall
below pipj (i.e., α(−−→pipj) < α(cright(pi, P [l : k])) and
α(−−→pipj) < α(cright(pj , P [l : k]))). By the definition of
the critical ray, no visibility ray can have a smaller
angle α than the critical ray. Hence the angle must
be equal to that of the critical ray and therefore the
visibility line is the critical ray. This means that the
intersection is at the starting point of the dual half-line.
The starting point of a dual half-line is not considered
part of the dual half-line and therefore ρ(pi, P [l : k])
and ρ(pj , P [l : k]) do not intersect. The proof for
β(pi, P [l : k]) and β(pj , P [l : k]) is symmetric.

Palazzi and Snoeyink [21] present an algorithm
that computes, in O(n log n) time, the total number
of intersections between a set of self-non-intersecting
(red) line segments and another set of self-non-
intersecting (blue) segments. Half-lines are a special
case of line segments, where one endpoint is at ∞
(or −∞). We note that the algorithm by Palazzi and
Snoeyink produces only the total number of red-blue
intersections (i.e., a single number), while we require
intersection counts for each half-line. However, we
can modify their algorithm to produce the desired
result without impacting asymptotic performance.

3.2 A Practical Algorithm for Red-blue In-
tersection Counting While leveraging the red-
blue segment intersection algorithm of Palazzi and
Snoeyink [21] provides an O(n log n) solution to Bi-
partite Visibility, it ignores some features specific to
our problem. Thus, we present a simple plane sweep
algorithm to count the intersections between duals of
right and left critical rays. This plane sweep algorithm
exploits some features of the dual half-lines of critical
rays.

Let R = {ρ(pi, P [l : k])} and B = {β(pj , P [k+ 1 :
r])}, be the set of red and blue self-non-intersecting
half-lines (i.e., no half-lines intersect others of the
same color). To simplify our description, we use the
following notation; we denote the x- and y-coordinate
of a vertex p by px and py, respectively. Given any
half-line λ, we denote its endpoint by λx,y and the
x- and y-coordinates of the endpoint by λx and λy,
respectively, i.e., λx,y = (λx, λy). The y-coordinate
of λ evaluated at x is denoted by λ(x). That is, if λ
is defined at x then vertex px,λ(x) = (x, λ(x)) ∈ λ. If
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Figure 4: An illustration of B(ρ) and B(ρ).

λ is not defined at x, then we say λ(x) is undefined.
Finally, we say a vertex q is above (resp. below) a
half-line λ, if λ(qx) is defined and qy > λ(qx) (resp.
qy < λ(qx)). If λ(qx) is undefined, then the above-
below relationship between q and λ is undefined.

The following lemma is the key for developing a
simple plane sweep algorithm for our red-blue half-line
intersection counting problem.

Lemma 3.3. Any ρ ∈ R and β ∈ B intersect if and
only if the endpoint ρx,y is above β and the endpoint
βx,y is above ρ.

Proof. Assume ρx,y is above β and βx,y is above ρ.
There must be a point q with ρx < qx < βx s.t.
ρ(qx) = β(qx). Since ρ is continuous for all x ≥ ρx
and β is continuous for all x ≤ βx, ρ and β intersect
at qx.

In the primal space, all points from the left merge
set have smaller x-coordinates than any point from
the right set. Therefore, all ρ ∈ R have a smaller
slope than all β ∈ B. It follows that, if ρ and β
intersect at q, then ρ(a) > β(a) and β(b) > ρ(b) for
all a < qx < b. Since ρx has the smallest x-coordinate
for which ρ is defined, ρx < qx. Therefore, ρx,y is
above β. Conversely, βx is the largest x-coordinate of
β, so βx > qx. Thus, βx,y is also above ρ.

To compute the number of blue half-lines in B
that each ρ ∈ R intersects, consider the following
subsets of blue half-lines:
• B(ρ): blue half-lines β ∈ B that are below ρx,y

(i.e., β(ρx) < ρy)
• B(ρ): blue half-lines β ∈ B with endpoints that

are above ρ (i.e., βy > ρ(βx))
By Lemma 3.3, the set of blue half-lines which

intersect ρ is B(ρ)∩B(ρ) and by the inclusion-exclusion
principle, its cardinality is |B(ρ)|+|B(ρ)|−|B(ρ)∪B(ρ)|.
Note that B(ρ) ∪ B(ρ) is the set of all blue half-lines

with x-ranges that overlap with ρ, i.e. B(ρ) ∪ B(ρ) =
{β ∈ B : βx > ρx}. Figure 4 shows an example for a
single red half-line and four blue half-lines.

Similarly, we define R(β) and R(β) and the
number of red half-lines that intersect β is equal to
|R(β)|+ |R(β)| − |R(β) ∪R(β)|. Thus, it remains to
compute each of these quantities.

3.2.1 Computing |B(ρ)| and |R(β)| To compute
|B(ρ)| we sweep the dual plane from right to left
with a sweep line ` which is perpendicular to the
x-axis. During the sweep, we maintain a balanced
binary search tree (BST) T which stores all blue half-
lines β that intersect `, in the order they intersect
it. Since blue half-lines do not intersect other blue
half-lines and continue to −∞, this is the same order
as the reverse relative order of the blue half-lines
by their slopes. Thus, every time the sweep line
encounters a blue half-line end point βx,y, we insert
β to T performing comparisons on the negative of
their slopes. Whenever the sweep line encounters the
endpoint ρx,y of a red half-line, the number of blue
half-lines below ρ is equal to the number of blue half-
lines β with y-coordinate β(ρx) smaller than ρy. And
since all blue half-lines in T are defined at the time
of the sweep, the above-below relationship between
the endpoint ρx,y and all blue half-lines in T is well-
defined. Thus, we can compute |B(ρ)| by performing
a search in T , comparing ρy to β(ρx). The rank of ρy
in the set of blue half-lines in T gives us |B(ρ)| – the
number of blue half-lines below ρ.

To implement this plane sweep, we need to sort B
and R by the x-coordinates of their endpoints. Each
insertion of a blue half-line in T takes O(log n) time.

β1

β2

ρ1

ρ2

ρ3

π′(ρ1) = β1

π(β1) = ρ1

π′(ρ3) = ∅

π′(ρ2) = β2

π(β2) = ρ1

Figure 5: Illustration of π′(ρ) and π(β) for several
half-lines.



We can compute the rank of ρy in T in O(log n) time
by augmenting each node v of T with the size of the
subtree rooted at v. Thus, the total computation of
|B(ρ)| for all ρ ∈ R takes O(n log n) time.

Note that the size of T when the sweep line
encounters ρx,y is |B(ρ) ∪ B(ρ)| – the number of blue
half-lines whose x-ranges overlap with ρ. During the
computation we also record for each red half-line ρ
the blue half-line π′(ρ) that is immediately below ρ
(the predecessor of ρy in the T ). Refer to Figure 5 for
an illustration.

Computation of |R(β)| is symmetric, except the
sweep is performed from left to right. During the
computation, we also record |R(β) ∪R(β)| and π(β)

— the red half-line that is immediately below the
endpoint of β. The concepts of π(β) and π′(ρ) will be
used for computing |B(ρ)| and |R(β)|, respectively.

3.2.2 Computing |B(ρ)| and |R(β)| The follow-
ing description focuses on the computation of val-
ues |B(ρ)|; the computation of |R(β)| is symmetric.
Since computing |B(ρ)| and |R(β)| entails counting
half-lines below each given endpoint, the above-below
relationship is well-defined at the time the sweep line
hits the endpoint in question. Here, on the other
hand we are counting the number of points above a
half-line, which must be counted for every half-line.
To accomplish this efficiently, we assume that we have
already computed π(β) for each blue half-line β as
described in Section 3.2.

To compute |B(ρ)| we sweep a vertical line from
right to left (refer to Figure 6 for an illustration).
During the sweep we maintain a balanced BST T

on the slopes of π(β). That is, when the sweep line
encounters an endpoint of a blue half-line β and π(β)
is defined, we insert the slope of π(β) into T . If π(β)
is undefined, there is no red half-line below the end
point of β and since each red half-line ρ is defined for
all x ≥ ρx, the endpoint of β does not lie above any
red half-line and can be safely ignored.

At time ρx of the sweep, that is when the sweep
line encounters a red half-line end point ρx,y, the
number of entries in T that are greater than or equal
to the slope of ρ is equal to the number of blue half-line
endpoints above ρ. To see this, observe that when ρx
is encountered by the sweep line, tree T contains all
blue half-line endpoints that have a well-defined above-
below relationship with ρ. Since the red half-lines do
not intersect other red half-lines, the ordering of the
slopes of the red half-lines is equivalent to the above-
below relationship among the red half-lines which are
defined at ρx. The above-below relationship between
red half-lines and blue half-line endpoints defines a
partial order, which means that if βx,y is above ρ1,
both ρ1 and ρ2 are defined at βx and ρ1(βx) > ρ2(βx),
then βx,y is also above ρ2. Consequently, the set of
endpoints of blue half-lines above ρ is equal to the set
of blue half-lines β with slopes of π(β) greater than
the slope of ρ. See Figure 6 for an illustration of this
plane sweep.

Given the above, whenever the sweep line en-
counters an endpoint of a red half-line ρ, we perform
predecessor/successor query on T using the slope of
ρ to find the number of points above ρ. Maintaining
and querying T take O(log n) time per blue half-line
endpoint (insertion) or red half-line endpoint (query),

β1

β2ρ1

ρ2

ρ3

β3

β5

β4

sweep line

π(β4) π(β3) π(β2) π(β5)
ρ3 ρ2 ρ2 ρ1

query: ρ2

|B(ρ2)| = 3

T

Figure 6: Example of the plane sweep algorithm used to find |B(ρ)|. The vertical sweep line moves from right
to left and, when a blue endpoint βx,y is encountered, π(β) is added to the search tree T . When the sweep
line encounters a red endpoint ρx,y, the tree is queried by the slope of ρ. The number of leaves in the search
tree that have slopes greater than or equal to the slope of ρ is equal to |B(ρ)|.



resulting in O(n log n) time overall to compute |B(ρ)|
for each half-line half-line ρ. Computing |R(β)| is
symmetric.

3.3 Maintaining Critical Rays Our overall
divide-and-conquer algorithm relies on the knowledge
of the critical rays at the beginning of each recursive
call. At the base case, subset P [l : r] contains only
one point. Therefore, both left and right critical rays
of that point are directed vertically downward. There-
after, at the end of each recursive call, we update
these rays by recomputing only the right critical ray
for each point in P [l : k] and the left critical ray for
each point in P [k + 1 : r]. To do this, we need the
next lemma.

Lemma 3.4. The tangent from pi ∈ P [l : k] to the
upper convex hull of all vertices in P [k + 1 : r] is the
critical ray cright(pi, P [l : r]) if and only if the vertex
pt on the hull that the tangent goes through is visible
to pi. Symmetrically, the tangent pj ∈ P [k + 1 : r] to
the upper hull of vertices in P [l : k] is the critical ray
cleft(pj , P [l : r]) if and only if the tangent point pt′ on
the hull is visible to pj.

Proof. Suppose a point pt, that is not on the upper
hull, would determine the critical ray of pi, then pt is
outside the upper hull. If pt is inside the upper hull,
the visibility line from pi to pt is below a point on
the upper hull. So, pt is outside the upper hull and
therefore the convex hull is not a valid convex hull.
Hence only points on the upper hull can be candidates
for the critical ray.

Let pt be the point on the upper hull, such that
the tangent goes through pt. If pt is not visible to pi,
then there is a point pk s.t., t < k < i or t > k > i,
that is above the visibility ray −−→pipt. Since the tangent
from pi to the upper hull goes through pt, pk must
not be in the set encompassed by the upper hull.
Therefore pk is in the set included with pi and the
previous critical ray of pi is steeper than the tangent,
so the tangent is not cright(pi, P [l : r]).

If, however, pt is visible to pi, then the critical
ray of pi falls below pt. Furthermore, the visibility ray
from pi to other points on the upper hull are below
the tangent (by property of tangents) and therefore
the tangent is the only visibility line that is not below
any other point of the upper hull. Hence the tangent
is cright(pi, P [l : r]).

Thus, to update cleft(pi, P [l : r]) and
cright(pi, P [l : r]) we build the upper convex hulls
of P [l : k] and P [k + 1 : r], and for every point in
these two subsets we construct the tangent to the hull

of the opposite subset. Building these hulls takes O(n)
time because points are pre-sorted by x-coordinates.
Computing tangents is equivalent to binary searches,
which takes O(log n) time per tangent for a total of
O(n log n) time. Combining this with the rest of the
analysis presented in Section 3, we conclude that we
can solve each recursive level of 1DVisibilityIndex
in O(n log n) time. Hence, the total running time of
algorithm 1DVisibilityIndex is O(n log2 n).

Theorem 3.1. Let T be an 1D terrain that consists
of n vertices. We can compute the total visibility-index
of T in O(n log2 n) time, using O(n) space.

4 Parallel Extension

Persistence [7] is a technique for efficiently maintaining
all past versions of a dynamic structure for future
queries. A persistent binary search tree supports all
standard update operations into the data structure
during construction, allowing queries to be performed
on any of its past versions. Each of these queries can
be performed independently of each other. Thus, if
a persistent tree can be built efficiently in parallel, n
queries can be answered in parallel in O(log n) time
using n processors, i.e., in O(n log n) work, in the
CREW PRAM model.

Atallah et al. [3] describe a data structure that
they call array-of-trees, which implements a persistent
search tree and can be built in the CREW PRAM
model in O(log n) time and O(n log n) work. Hence,
we can implement the tree structure used in the
plane sweep of Section 3.2 as an array-of-trees, and
thus perform this sweep in O(log n) parallel time and
O(n log n) work.

Thus, the parallel runtime and work of the
overall algorithm can be defined by the recurrences
Φ(n) = Φ(n/2) + O(log n) = O(log2 n) and W (n) =
2W (n/2) + O(n log n) = O(n log2 n), respectively.
This yields the following theorem.

Theorem 4.1. The 1D total visibility-index problem
can be solved in O(log2 n) time and O(n log2 n) work
in the CREW PRAM model.

The work complexity of the parallel algorithm
matches our sequential algorithm runtime, which is
the best we can hope for from a parallel algorithm.

Our parallel implementation replaces each plane
sweep operation described in Section 3.1 with the
construction and querying of an array-of-trees (AoT).
For each AoT construction, we begin with the input
data as a set of pairs (key k, time t), sorted by k.
This initial dataset becomes the leaf level of the AoT,
on top of which we construct the structure bottom-up



by a variation of merge sort on t. At each level, we
merge pairs of sets to form parent nodes, consisting of
all of the t values of its children in sorted order. Each
t value also maintains pointers to the elements in each
child node with largest tchild, s.t. tchild ≤ t. The top
level of the AoT contains a single list sorted by t, with
each element corresponding to a root node of a BST,
searchable by key k. We employ a variation of the
parallel Mergepath [20] algorithm to construct the
AoT in O(log n) parallel time and O(n log n) work.

Querying the AoT involves two steps: 1) find
the correct root and 2) query the corresponding BST.
Since the top level of the AoT is a list sorted by t, we
perform a binary search to find the correct BST for the
query. We then search the associated BST with the
key. Each of these two steps requires O(log n) work
and at each recursive level our algorithm performs
O(n) such queries. Thus, these queries take O(log n)
parallel time O(n log n) work at each level.

A primary drawback of the AoT structure is its
space requirement. At each level of the structure,
we must store O(n) elements, so the total structure
requires O(n log n) space. Furthermore, each element
stores child pointers and other information (depending
on the query function). For large datasets the AoT
memory requirement may thus become detrimental
to overall performance.

5 Experimental Results

In this section we present an empirical evaluation of
the performance of our algorithm on synthetic and
real-world datasets. We implement four algorithms:
Naive, RedBlue, Sweep, and ParAoT. Naive is
the O(n2) algorithm described in Section 3 and is
used as baseline. RedBlue, Sweep, and ParAoT
all use the divide-and-conquer approach presented in
Section 3 but they differ in the implementation of

the half-line intersection counting step: RedBlue
implements the Palazzi and Snoeyink [21] algorithm
for red-blue line segment intersection counting, Sweep
implements the algorithm presented in Section 3 using
plane sweep, and ParAoT employs the array-of-trees
data structure described in Section 4. Asymptotically,
all three algorithms achieve O(n log2 n) sequential
running time. However, Sweep and ParAoT are
much simpler than RedBlue and achieve better
performance in practice. Furthermore, ParAoT is
amenable to parallelization.

5.1 Methodology All algorithms are implemented
in C++ and compiled with gcc 4.8.5 using the -Ofast
optimization flag. Parallel execution is performed
using the openMP library that is included with the
gcc compiler. All geometric structures, predicates, and
primitives used by all of our algorithms are custom
implementations. We use two hardware platforms
for our evaluation. The 4-core Algoparc platform
comprises of Intel Xeon E5-1620 processor (4-core,
3.6 GHz) and 16 GiB of RAM, running the Ubuntu
14.04 operating system. The 20-core Uhhpc platform
comprises of two Intel Xeon E5-2680 processors (10-
core, 2.80 GHz), 128 GiB of RAM, and runs the Red
Hat Server 6.5 operating system. Note that Uhhpc
has 2 CPU sockets, each with 4 memory channels to
RAM and an independent L3 cache. All experimental
results are averaged over 10 iterations.

5.2 Datasets We evaluate our algorithm imple-
mentations on three synthetic datasets. We consider
a flat dataset in which all points’ elevations are set to
hi = 1, so that each point can only see its (at most
two) neighboring points. For this dataset, RedBlue,
Sweep, and ParAoT compute few intersections at
each level of recursion, and thus provides a simple cor-
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Figure 7: Examples of elevation profiles from 216-point slices of the Earth dataset (note the different scales).
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Figure 8: Sequential algorithm performance on synthetic and real-world datasets.
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Figure 9: All four algorithms for the Random dataset.

rectness case and a performance baseline. We consider
a parabolic dataset in which each point’s elevation is
set to hi = i2, so that every point can see every
other point. For this dataset RedBlue, Sweep, and
ParAoT compute many intersections at each level
of recursion. Finally, we consider Random datasets
in which point elevations are uniformly sampled from
the range [1,1000].

We also perform evaluations on datasets generated
from real-world terrain maps. The CGIAR-CSI
Global-Aridity and Global-PET Database [26, 27]
consists of elevation data for the entire earth with 90-
meter resolution. We extract 1-dimensional slices from
4 different regions: Europe, Asia, Africa, and North
America. Each slice consists of 216 points (spanning
∼5000 km). For each of the four regions, we extract
ten East-West slices at 1 km North-South intervals.
These slices lead to diverse elevation maps, as seen in

Figure 7.

5.3 Sequential Performance Results We evalu-
ate our sequential implementations on the Algoparc
platform. Figure 9 shows average runtime vs. dataset
size (n) for synthetic random datasets. As expected,
the quadratic complexity of Naive results in much
sharper runtime growth compared to the O(n log2 n)
algorithms. Additionally, we see that the simplified
half-line intersection counting algorithm described in
Section 3.1 gives Sweep and ParAoT a significant
practical performance advantage over RedBlue.

Figure 8a shows average runtimes for RedBlue,
Sweep, and ParAoT for our three classes of synthetic
datasets, for n = 106 vertices (we omit Naive
results since its runtime is prohibitive for such
large n). These results confirm that Sweep and
ParAoT are consistently faster than RedBlue, with
an average speedup of 3.79 and 8.19, respectively.
Figure 8a further reveals that Sweep has a significant
variance in execution time across different synthetic
datasets, indicating that the overhead of maintaining
and balancing a large BST during the plane sweep
has major impact on algorithm performance. The
performance of ParAoT, however, is not dependent
on the dataset, and therefore outperforms Sweep on
all but the flat synthetic datasets.

Figure 8b shows runtimes for each algorithm when
applied to data from each region of our real-world
dataset, averaged over all 10 slices. As with syn-
thetic datasets, both Sweep and ParAoT greatly
outperform RedBlue with an average speedup of
5.65 and 8.25, respectively. We conclude that the
half-line intersection algorithm employed by Sweep
and ParAoT provides a significant performance im-
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Figure 10: Parallel performance on real-world datasets for varying number of compute threads, on each of
our two hardware platforms.
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provement over the red-blue intersection counting used
by RedBlue [21]. Furthermore, even sequentially,
ParAoT is faster and more consistent that Sweep,
indicating that the AoT data structure is an effective
alternative to plane sweep for our problem.

5.4 Parallel Performance Results Besides the
performance benefit of using AoT structure seen in the
above results, another advantage is that it is amenable
to parallelization. In this section, we evaluate the per-
formance of our parallel implementation of ParAoT.
While ParAoT employs parallel AoT construction
and querying, the convex hull computations are per-
formed sequentially. At lower levels of recursion, we
can create and query convex hulls concurrently. How-
ever, at the top levels of recursion there are fewer

hulls and computation is serialized. While paralleliza-
tion of this step may improve speedup, we determine
that other factors limit overall parallel performance.
Thus, we leave parallelization of individual convex
hull creation for future work.

To assess parallel performance from a practical
standpoint, we present results obtained on our real-
word dataset. Figure 10a and 10b show the average
runtime of ParAoT on our real-world datasets, for
varying numbers of threads, on both our hardware
platforms. While parallelization provides significant
speedup the benefits are limited, especially as the total
number of threads increases (note that Algoparc
has 4 cores but 8 hardware threads due to hyper-
threading). Overall, the parallel implementation
achieves a maximum speedup of 2.44 and 3.86 on
Algoparc and Uhhpc, respectively. We note
that our real-world datasets contain 216 data points,
which may not be sufficiently large to make the
parallelization overhead costs negligible.

To understand the cause of the poor parallel
performance we perform a series of experiments on
synthetic random datasets (for which we can vary the
size). Figure 11 shows average speedup vs. data set
size, using the best (empirically) number of threads
for each hardware platform. For 216 points we see
similar parallel speedup close to 3.00 on both hardware
platforms. As the dataset size increases parallel
speedup also increases on both hardware platforms.
At the largest input size (limited by memory), we see
a maximum speedup of 3.51 and 7.25 on Algoparc
and Uhhpc, respectively. Parallel speedup remains
well below peak parallel performance, especially for
Uhhpc where we would expect a speedup nearing 16



for 16 threads.
One drawback of the array-of-trees data structure

is the large O(n log n) memory requirement. Fur-
thermore, the querying of the AoT involves random
memory accesses that may lead to poor cache uti-
lization. Therefore, we conjecture that ParAoT is
memory bound, thus causing memory bandwidth to
be a bottleneck limiting parallel speedup. This is sup-
ported by the fact that the parallel speedup we obtain
on each hardware platform corresponds to the num-
ber of available memory channels. Algoparc, while
running 8 hardware threads, is limited by 4 memory
channels and achieves a maximum speedup of 3.51.
Uhhpc has 8 memory channels (4 per socket) and
achieves a maximum speedup of 7.25, despite using
16 hardware threads.

Our parallel results indicate that, while the AoT
data structure allows for efficient parallelization of the
half-line intersection computation, it creates a memory
bottleneck that limits parallel performance. Reducing
the memory requirement of the AoT or improving the
memory access pattern of AoT queries may alleviate
this issue, which we will consider in future work.

6 Conclusions

We presented an O(n log2 n) algorithm for the 1D total
visibility-index problem. To the best of our knowledge
it is the first subquadratic-time algorithm for this
problem. We implemented three versions of this
algorithm and, not surprisingly, all implementations
are much faster than the existing quadratic solution.
Among the three versions, our new red-blue half-line
intersection counting solution provides significantly
better performance. Additionally, we presented a
parallelization of this intersection counting solution
using the array-of-trees data structure, allowing us to
solve the 1D total visibility problem in O(log2 n) time
and O(n log2 n) work in the CREW PRAM model.

Empirical results presented for two hardware plat-
forms indicate that, even when running sequentially,
our array-of-trees implementation outperforms the
simple plane sweep method on most synthetic and
real-world experiments. Furthermore, our array-of-
trees implementation provides significant parallel per-
formance gain when leveraging multiple threads. Our
results indicate that our parallel speedup may be
bound by memory bandwidth, and we leave further
investigation, as well as further optimization, for fu-
ture work.

An interesting open problem is to determine
whether the dualization used in our solution can be
applied to the 2D total visibility-index computation to
achieve a subquadratic solution on two-dimensional

terrains. Another interesting avenue for future
research is to see if our solution can be applied for
faster approximate solutions to the 2D total visibility-
index problem, by computing total visibility-index on
a number of 1D slices of the 2D terrain and then using
interpolation to approximate visibility indices to all
points in the 2D terrain.
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