
Efficient Batched Predecessor Search in Shared Memory on GPUs

Ben Karsin
karsin@hawaii.edu

Henri Casanova
henric@hawaii.edu

Information & Computer Sciences Dept., University of Hawai‘i at Mānoa
Honolulu, Hawai‘i, USA

Nodari Sitchinava
nodari@hawaii.edu

Abstract—Many-core Graphics Processing Units (GPUs) are
being used for general-purpose computing. However, due to
architectural features, for many problems it is challenging
to design parallel algorithms that exploit the full compute
power of GPUs. Among these features is the memory design.
Although the issue of coalesced global memory access has
been documented and studied extensively, another important
architectural feature is the organization of shared memory
into banks. The study of how bank conflicts impact algorithm
performance has only recently begun to receive attention.

In this work we study the predecessor search algorithm and
the effects of bank conflicts on its execution time. Via com-
plexity analysis we show that bank conflicts cause significant
loss in parallelism for a naive algorithm. We then propose
two improved algorithms: one that eliminates bank conflicts
altogether but that uses a work-inefficient linear search, and
one that is work-optimal but that experiences a limited number
of bank conflicts. We develop GPU implementations of these
algorithms and present experimental results obtained on real-
world hardware. These results validate our theoretical analysis
of the naive algorithm and allow us to assess the performance
of our algorithms in practice. Although both our improved
algorithms outperform the naive algorithm, our main experi-
mental finding is that our conflict-limited algorithm provides
a larger performance gain.

I. INTRODUCTION

Graphics Processing Units (GPUs) are increasingly used
for general-purpose computing [1]–[4]. Modern GPUs host
thousands of compute cores, enabling them to achieve enor-
mous performance gains for easily parallelizable problems
when compared to CPUs. The parallel random access
memory (PRAM) model [5] is a classical model for parallel
algorithm design. It consists of processors and a single mem-
ory shared by all processors. The execution is performed
in lockstep and each processor can access any address in
memory in unit time concurrently with other processors.
Due to the model’s simplicity, a large number of PRAM
algorithms have been designed [5], [6]. PRAM algorithms
are good starting points for GPU implementations, but it
is difficult for them to leverage the full computational
power of GPUs due to specifics of the GPU architecture.
In particular, features of the hierarchical memory design

This work was partially supported by the National Science Foundation
under Grant No. 1533823.

(e.g., the use of shared memory, coalesced global memory
access, shared memory bank conflicts) violate the unit-time
access assumption of the PRAM model, making the PRAM
execution time prediction inaccurate on GPUs in practice.
Consequently, these architectural features must be taken into
account for designing efficient parallel GPU algorithms.

Searching is a fundamental operation that is at the core of
a number of algorithms. In this paper we study the effects
of bank conflicts on the batched predecessor search (BPS)
problem:

Definition 1.1: Given a list K of K keys K[0], K[1], · · · ,
K[K − 1], sorted in non-decreasing order, and a set Q of Q
queries, the BPS problem asks to find for each q ∈ Q the
largest i, such that K[i] ≤ q.

BPS can be solved optimally in the standard RAM model
in O(Q logK) time by running the classical binary search
algorithm on K for each query q ∈ Q. In the p-processor
CREW PRAM model1, a straightforward and optimal par-
allelization consists in performing each binary search in
parallel, achieving O(Q

p logK) time.2 Performing a single
predecessor search using binary search is also optimal on
the GPU, but for a batch of queries the memory design on
the GPU raises challenges.

The issue of coalesced access to global memory has been
documented and studied extensively [2], [7], [8]. In this
work we focus instead on the effects of shared memory
bank conflicts. When the input is stored in the GPU’s shared
memory, we show that bank conflicts significantly decrease
the parallelism of the straightforward parallel binary search
algorithm. We construct a family of worst-case input queries
for which it incurs a large number of bank conflicts and,
therefore, always achieves sub-optimal performance. We
propose modifications to the binary search algorithm to
achieve optimal performance even in the presence of bank
conflicts. More specifically, our contributions are:
• Via complexity analysis we show that, in the worst case,

the straightforward parallel binary search algorithm

1The CREW PRAM model allows concurrent reads from, but not
concurrent writes to the same address in memory by multiple processors
in a single time unit.

2To avoid cumbersome notation, throughout the paper the fractions within
runtimes are rounded up, i.e., x

y
=
⌈
x
y

⌉
.

cannot exploit the full parallelism of a GPU due to
bank conflicts.

• Since the straightforward algorithm experiences poor
performance due to shared memory bank conflicts on
the GPU, we propose a conflict-free algorithm.

• A drawback of the conflict-free algorithm is that it relies
on a work-inefficient linear search. We thus propose
another algorithm that incurs a bounded number of
conflicts but that is work-optimal.

• We present experimental results that validate our the-
oretical analysis, show strong correlation between ex-
perimental execution time and the number of bank con-
flicts, and that our conflict-limited algorithm achieves
good performance in practice.

The rest of the paper is organized as follows. Section II
provides an overview of the GPU architecture. Section III
reviews related work. Section IV provides a detailed analysis
of the straightforward parallel binary search algorithm and
introduces our two improved algorithms. Section V describes
implementation details and discusses experimental results.
Finally, Section VI concludes with a summary of our find-
ings and future research directions.

II. GPU ARCHITECTURE

In this section we provide an overview of modern GPU
architectures, highlighting features that are germane to this
work. See standard references [3], [4] for more details.

Modern GPUs comprise hundreds or even thousands of
identical physical processors, or cores. These cores are
organized hierarchically, by combining a group of cores into
streaming multiprocessors (SMs). Each SM contains small,
but fast shared memory, which is available to the threads
running on that SM. A larger, but slower global memory
is shared among all SMs (see Figure 1). In addition, each
thread has access to a limited number of private registers.

A. Thread organization

To hide the latency of memory accesses, each GPU
supports execution of more threads than physical cores.
A typical GPU can support thousands of threads, each
identified by a unique ID. To manage such large numbers,
groups of w threads, called warps, are executed in lockstep
in single instruction, multiple data (SIMD) fashion. Parallel
SIMD execution suffers from “branch divergence” if the
threads in a warp follow different execution paths (e.g., due
to conditionals), in which case thread execution is serialized.

Threads are organized into warps deterministically based
on thread ID (a warp consists of w threads with contiguous
integer IDs, starting with ID 0). The programmer has no
control over which warps will be scheduled on which SMs.
The only control available to the programmer is via organi-
zation of groups of warps into thread blocks or cooperative
thread arrays (CTAs) [8], [9], with all threads of a thread
block guaranteed to be scheduled on the same SM. This

GPU
SM

Global Memory

C
o n

tr
ol

 L
og

ic

S
ha

re
d

M
em

or
y

SM SM SM

SM SM SM SM

Processor Cores

Figure 1: Most modern GPUs consist of Streaming Multi-
processors (SMs), each of which has its own control logic,
shared memory, and many processor cores.

organization allows all threads of a thread block to share
the data stored in the shared memory of a SM.

Thanks to fast context switching among warps, better
memory latency hiding is achieved by increasing the total
number of threads, p, up to the point when the memory
bandwidth is fully saturated. Thus, when designing algo-
rithms for GPUs, we want them to scale with the number
of threads up to the largest possible value of p. However,
the maximum effective value for p (the one that causes the
memory bandwidth to saturate) is dependent on the hardware
and can be determined by the programmer experimentally
for the specific GPU.

B. Memory Hierarchy

Each level of GPU memory has different latency, through-
put, access scope, and optimal access pattern. Although
various memory and caching options are possible, in this
work we focus on the pervasive global memory and shared
memory levels (we do not consider registers explicitly as
they are private to threads).

Global memory is the only way to communicate between
threads of different thread blocks, but it is at least an order of
magnitude slower than the other types of memory [3], [7].
Consequently, to approach peak performance its use must
be limited. Research focused on modeling the GPU memory
hierarchy [2], [8]–[11] has demonstrated that, to obtain close
to peak theoretical throughput, global memory access must
be coalesced. Memory access is coalesced when, during a
SIMD operation, the threads of a warp access consecutive
elements in global memory. In this case, all threads obtain
an element in a single access concurrently, whereas non-
coalesced access requires that each thread perform a separate
access in a serial manner. See [7], [10] for an in-depth
discussion of this topic.

M
e

m
o

ry
 B

a
n
k
s

w

Thread1 Thread2 Thread3 Thread4

Bank 1

Bank 2

Bank 3

Bank 4







a[0]

a[1]

a[2]

a[3]

a[w]

...

Figure 2: 4 threads accessing shared memory simultaneously
without bank conflicts. Threads 1 and 2 can access the same
memory cell simultaneously thanks to data multicast.

Shared memory is a smaller, faster memory that, as seen
in Figure 1, is private to each SM. We denote the size of
shared memory on each SM by M . Like for global memory,
access to shared memory must follow a certain pattern to
obtain peak throughput. The shared memory of each SM is
implemented as a collection of memory banks. We assume
w memory banks – the same as the number of threads in a
warp. This is typical on modern GPUs because more threads
than memory banks would lead to bank conflicts (see below),
and too few threads would waste memory bandwidth. Each
memory bank thus contains M

w cells and shared memory
can be viewed as a w× (M/w) matrix with memory banks
forming its rows. Linear data arrays are laid out in column-
major order in this matrix.

During a SIMD instruction, as long as threads within a
warp access either the same address (in which case the
data is multicasted to the threads) or distinct banks, the
data is delivered to the threads concurrently (see Figure 2).
However, if during a SIMD instruction threads of a warp
attempt to access different addresses within the same bank, a
bank conflict occurs, and the memory accesses are serialized.
Thus, if during a SIMD instruction, x is the maximum
number of threads accessing distinct addresses within the
same bank, we say that there is an x-way bank conflict, and
the instruction takes x times longer to execute (see Figure 3).
Since bank conflicts serialize memory accesses, they must
be avoided if one hopes to approach peak performance.

III. RELATED WORK

Several authors have designed efficient GPU implemen-
tations for many classical problems, including parallel scan
and prefix sums [9], [12]–[14], sorting [8], [15], [16], graph
algorithms [17]–[19]. Since there many results on searching,
in this section we only focus on recent work relevant to the
problem of searching on GPUs [20]–[24].

For dynamic datasets indexing is the most common opti-
mization technique. Kaczmarski [20], [21] studies the con-
struction of the B+-tree data structure to index data in GPU
global memory. By focusing on the B+-tree, the author takes

M
e

m
o

ry
 B

a
n
k
s

w

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6

  Bank 1

Bank 2

Bank 3

Bank 4







Figure 3: Bank conflicts occur when multiple threads access
different memory cells in the same bank. This example
corresponds to a 4-way bank conflicts since 4 distinct cells
are being accessed in a single bank (bank 1).

advantage of coalesced global memory accesses. Similarly,
Shekhar [22] proposes GPU-efficient global memory data
structures designed to improve performance of the IP lookup
operation. Kim et al. [23] create a hybrid CPU/GPU data
structure to achieve high peak query throughput. Soman et
al. [24] address the limited memory on the GPU by looking
at compressing search tree data structures.

For sorted static datasets that are small enough to fit
in GPU shared memory, binary search remains one of
the fastest practical ways of searching for an element due
to small constant factors in the time complexity of the
algorithm. As a result, several GPU sorting implementations
successfully utilize binary search as a subroutine [15], [16],
[25]. In the process of developing a GPU Sample Sort,
Leischner et al. [15] eliminate branch divergence during
SIMD execution of a binary search within a warp by devel-
oping an implementation of the search that uses predicates
to eliminate conditional branches. But their implementation
does experience loss of parallelism due to shared memory
bank conflicts.

Researchers have recently started to pay attention to
shared memory bank conflicts and on how they lead to loss
of parallelism [10], [11], [26], [27]. These works incorporate
the number of bank conflicts in execution time analyses
or propose algorithms that are bank conflict free. In this
work we continue the study of the effects of bank conflicts
by analyzing and improving the binary search algorithm.
Our implementations also avoid conditional branches, thus
eliminating any loss of parallelism due to branch divergence
in the same way as in Leischner et al. [15].

IV. BATCHED BINARY SEARCH ON GPU

There are many small variations on how to implement
binary search, each leading to a different worst-case input for
the algorithm. We define here a simple version for concrete-
ness of exposition, noting that our analysis can be performed
for any of the variations. Algorithm 1 shows pseudo-code
for the standard binary search algorithm for a single query
q. The min and max functions are used to prevent out-of-

Algorithm 1: Pseudo-code for binary search.
BinarySearch(K, q):
index = bK/2c
δ = dK/4e
for dlogKe times do

if q ≥ K[index] then
index = min(index + δ, K − 1)

else
index = max(index - δ, 0)

δ = dδ/2e
end
if q < K[index] then

index = index - 1
return index

bounds memory accesses, but in our implementations we
instead pad the input to eliminate this extra computation. The
details of memory padding are explained in Section IV-B.

Let Parallel Binary Search (PBS) be the straightforward
parallel solution to the BPS problem by running Algorithm 1
for each query q ∈ Q concurrently.

In the p-processor CREW PRAM model, the PBS al-
gorithm takes optimal Θ(Q logK) work and ΘQ

p logK)
time. However, if data K is stored in shared memory of
the GPU, the serialization of memory accesses due to bank
conflicts violates the PRAM assumption that access to each
memory location takes unit time. Thus, the above bound is
not representative for the worst-case runtimes on GPUs (see
Section IV-A).

We assume that K fits in shared memory. If it does not,
then one must load portions of it into shared-memory and
batch the searches. But an efficient binary search in shared
memory, the focus of this work, is still needed for each
batch. For simplicity of exposition we also assume that w is a
power of 2. Although this is the case for most modern GPUs,
our results extend to other values of w via straightforward,
but tedious analysis.

A. Analysis of the PBS algorithm on GPUs

Let TPBS(Q,K, p, w) denote its execution time for Q
queries and K keys, on a GPU with w shared memory banks
and p threads organized into warps running w threads at
a time. Recall that p is no more than the the number of
threads required to saturate the shared memory bandwidth
(see Section II-A).

Theorem 4.1: For every sorted sequence K, |K| = K ≥
2w2, there exists a set of queries Q, |Q| = Q ≥ p, for which

TPBS(Q,K, p, w) = Ω

(
w · Q

p
log

K

w2

)
.

This theorem states that, in the worst case, the PBS al-
gorithm cannot fully exploit the parallelism of the GPU

(compare to the PRAM complexity Θ(Q
p logK)). The proof

of this theorem relies on the following lemma:
Lemma 4.2: For every sorted sequence K, |K| = K ≥

2w2, there exists a query set Q, |Q| = Q = w, for which
the time required to run the PBS algorithm using w threads
of a warp is at least

T (K,w) = Ω

(
w · log

K

w2

)
.

Proof: For simplicity, we construct the query set Q so
that each query q ∈ Q is an element of K.

Recall from Section II-B that with w memory banks,
a bank conflict occurs when separate threads within a
warp access shared memory cells K[i] and K[j], such that
i 6= j and i ≡ j (mod w). Since the PBS algorithm is
deterministic, for a given sorted sequence K, the access
pattern of each thread is a function of the query q ∈ Q
that the thread is processing. More specifically, in the k-th
iteration of the binary search loop (k = 1, 2, . . . , logK), a
thread may access one of 2k−1 possible memory addresses.
Let r = 2 logw + 1. Then for the w queries, in the r-
th iteration, there are w2 memory addresses that each of
w threads may be accessing. Therefore, by the pigeonhole
principle, among these w2 addresses, there exists a subset of
w distinct memory addresses that reside in the same memory
bank. We can choose Q so that these w distinct memory
addresses are accessed by the w threads in the r-th step,
thus resulting in a w-way bank conflict.

Consider an arbitrary pair of threads ti and tj within the
same warp, running on the above input Q. Let them access
memory addresses i and j, respectively, in the r-th step.
Since i and j are distinct, |i− j| ≥ K/2r. This implies that
(1) we can set each query to one of K/2r possible entries
of K and still cause w-way bank conflicts in iteration r;
and (2) any choice of these values will result in each thread
accessing distinct addresses in each of the final log(K)− r
iteration (including iteration r). Of these K/2r choices, we
choose each query so that in the rest of the algorithm all
threads take the same branch of the if statement.

Let the addresses accessed by ti and tj in any iteration
k ≥ r be i+ δk and j+ δk, respectively. Since every pair of
threads accesses the same bank in round r, i ≡ j (mod w),
and it follows that i+ δk ≡ j + δk (mod w).

Thus, for logK − r + 1 rounds, our input Q causes w-
way bank conflicts, resulting in running time of at least Ω(w·
(logK − r + 1)) = Ω

(
w · log K

w2

)
.

Proof (of Theorem 4.1): A typical (deterministic) GPU
implementation breaks down Q queries into Q/w groups
of w queries each, and each group is processed in SIMD
fashion by one of the p/w warps. Note, that only p/w
out of Q/w groups can be processed simultaneously. By
Lemma 4.2, each such group takes Ω

(
w · log K

w2

)
time to

M
e

m
o

ry
 B

a
n
k
s

w

Memory Cells

step 1

step 2

step 3

step 4

PBS access pattern – K is a multiple of w2

K/w

K/2

Figure 4: Worst-case example for the first logK − logw
iterations of the PBS algorithm, when K is a multiple of
w2 (Corollary 4.1).

process. Thus, the total execution time is

TPBS(Q,K, p, w) = Ω

(
Q/w

p/w
·
(
w · log

K

w2

))
= Ω

(
w · Q

p
log

K

w2

)

It is well known that inputs that are multiples of w tend to
be very bad in terms of bank conflicts [14], [15], [28]. The
following corollary shows a slightly stronger lower bound
when K is a multiple of w2:

Corollary 4.1: For every sorted sequence K, such that
|K| = K ≥ w2 and K ≡ 0 (mod w2), there exists a query
set Q, |Q| = Q ≥ p, for which

TPBS(Q,K, p, w) = Ω

(
w · Q

p
log

K

w

)
.

Proof: If K ≡ 0 (mod w2), then all possible memory
addresses that each thread might access in the first r′ =
logw+1 iterations reside in memory bank 0 (see Figure 4).
Thus, we can find queries that cause w-way bank conflicts
starting from the iteration r′ = logw+1 instead of iteration
r = 2 logw+ 1 proven in Lemma 4.2. The rest of the proof
is similar to the proofs of Lemma 4.2 and Theorem 4.1.

When K is a multiple of w2, an example set of Q queries
that causes worst-case performance is when the i-th thread
of a warp (0 ≤ i < w) searches for query q = K[i · Kw +C],
for any 0 ≤ C < K

w fixed for the threads within that warp.

B. Conflict-Free Search

In this section we present a modified PBS algorithm,
which we call Parallel Binary Search - Conflict Free (PBS-
CF), that is free of shared memory bank conflicts. To do so,
we divide the PBS algorithm into two stages, and for each
stage we design a solution to eliminate all bank conflicts.
Stage 1 consists of the first logK − logw iterations, during
which δ ≥ w (see Algorithm 1). Stage 2 consists of the
remaining iterations. The access pattern and reason for bank
conflicts differ between the two stages, so we must develop
a different conflict-free solution for each pattern.

As seen in the proof of Lemma 4.2, after 2 logw + 1
iterations, in the worst case the PBS algorithm incurs w-
way bank conflicts. Since any thread can access any memory
bank, after enough iterations bank conflicts are unavoidable.
To remedy this situation we must ensure that, at each
iteration, threads within a warp access different memory
banks. For illustration purposes, let us consider the special
case where K is a multiple of w2, resulting in the access
pattern illustrated in Figure 4. In this case, for the first
logK−logw iterations, δ is always a multiple of w, causing
the same memory bank to be accessed at every iteration. If
we initially assign each thread a separate bank in this case,
we do not need to change the δ calculation and no bank
conflicts will occur. This is accomplished by giving each
thread an initial offset equal to its threadID within its warp.
The resulting access pattern is illustrated in Figure 5.

To extend the above approach to the general case for
any K, we alter the δ calculation. This can be achieved
by enforcing that δ be a multiple of w at each iteration,
so that each thread accesses only its assigned memory
bank and no conflict can occur. Therefore, we round the
δ calculation down to the nearest multiple of w at each
iteration. Algorithm 2 shows pseudocode for stage 1 of the
PBS-CF algorithm. As mentioned regarding Algorithm 1, we
pad the key list K to eliminate the need for checking bounds.
Specifically, we add w elements at the beginning and end
of K, with padding values of −∞ and ∞, respectively.

Algorithm 2: Pseudo-code for PBS-CF, stage 1.
PBS-CF-1(K, q):
offset = threadID mod w
index = bK/2c + offset
δ = dK/4e
δ -= δ mod w
while δ ≥ w do

if K[index] ≥ q then
index = index + δ

else
index = index - δ

δ = dδ/2e
δ -= δ mod w

end
return index

Note that the offset can be pre-computed before the
computation begins. Furthermore, for the special case where
K is a multiple of w2 we can eliminate the extra rounding
computation. As illustrated in Figure 5, this solution forces
every thread within a warp to exclusively utilize its own
memory bank, eliminating all bank conflicts from stage 1.

Once δ < w, the symmetry that enables stage 1 to be
completely conflict-free is lost. At this point, the memory
cells accessed by a thread can change memory banks,
leading to the possibility of bank conflicts. Therefore, we

M
e

m
o

ry
 B

a
n

k
s

w

Memory Cells

step 1

step 2

step 3

step 4

PBS-CF access pattern – Stage 1 (δ ≥ w)

K/w

K/2

Figure 5: Illustration of the shared memory access pattern
for stage 1 of the PBS-CF algorithm (δ ≥ w).

must utilize a different search method to ensure there are
no bank conflicts for stage 2. We note that w is quite small
(typically w = 32), so a linear search seems like a reasonable
choice. Conveniently, since the threads end stage 1 accessing
a different memory bank each, we need to continue only
from that position. In lockstep, each thread accesses the
next key (K[i+ 1]), until all w banks have been visited and
the query is found. This process requires w shared memory
accesses, but is completely bank conflict free. Algorithm 3
shows pseudo-code for stage 2 of the PBS-CF algorithm.

Algorithm 3: Pseudo-code for PBS-CF, stage 2.
PBS-CF-2(K, q):
if q < K[index] then

index -= w
for i = 0 to w − 1 do

if K[index+i] ≤ q then
result = index + i

end
return result

Note that stage 2 of the PBS-CF algorithm begins by
checking if the target is larger or smaller than the starting
point, K[index]. Depending on this check, we either search
the w elements smaller or larger than K[index] to find the
index of q. Because we pad K, this operation cannot result
in out-of-bounds memory accesses.

Since both stages are guaranteed to be bank conflict free,
the overall execution time of the PBS-CF algorithm on w
queries using a single warp will be Θ(log K

w +w), resulting
in overall execution time on Q queries Θ(Q

p log K
w + Qw

p).

C. Conflict-Limited Search

Because the PBS-CF algorithm is completely conflict-
free, it always requires the same number of memory accesses
per query. However, during stage 2 it is not work optimal,
requiring O(w) memory accesses (and operations) to search
w elements. The PBS algorithm, on the other hand, is work
optimal, requiring only Θ(logw) iterations to search the

M
e

m
o

ry
 B

a
n
k
s

w

Memory Cells

PBS-CL access pattern – Stage 2 (δ < w)

K/w

Worst case example

step α+1

step α+2

step α+3

step α+4

α=log(K)-log(w)

Figure 6: Illustration of the shared memory access pattern
for stage 2 of the PBS-CL algorithm (δ < w), for a worst-
case example.

last w elements. However, in the worst case, it incurs w-
way bank conflicts at each of these iterations, leading to
O(w logw) total memory accesses, a factor Θ(logw) more
than PBS-CF. In this section we implement a hybrid algo-
rithm PBS-CL (Parallel Binary Search - Conflict Limited)
with the goal to minimize the number of bank conflicts while
remaining work optimal.

PBS-CL uses the same conflict-free stage 1 (the first
logK − logw iterations) as PBS-CF. However, it uses
a hybrid approach for stage 2 that introduces few bank
conflicts while keeping the number of operations the min-
imal Θ(logw). Recall that, for the PBS-CF algorithm,
each thread accesses a different memory bank during stage
1 (specifically, each thread accesses bank i where i ≡
threadId (mod w)). Upon starting stage 2, the offset
between each thread is preserved, causing them to each
access a different bank. If we then perform a binary search,
with all threads utilizing the same δ value, we can preserve
these offsets and reduce the number of bank conflicts while
remaining work optimal, requiring only Θ(logw) iterations.
As with PBS-CF, we pad K to prevent out-of-bounds mem-
ory accesses.

Figure 6 illustrates which cells may be accessed at each
iteration of stage 2 of the PBS-CL algorithm, in the worst
case. For the first iteration of stage 2, δ = w

2 , and, since w
is a power of 2 and

(threadId+
w

2
) ≡ (threadId− w

2
) (mod w),

there will be no conflicts (and thus only 1 parallel access).
For the second iteration, however, there is potential for at
most a 2-way conflict. For the third iteration, the worst
case would have one 4-way conflict, and so on. Thus, as
illustrated in Figure 6, the worst-case number of memory
accesses for stage 2 is

∑logw−1
i=0 2i = w − 1.

Since stage 1 is bank conflict free, the overall execution
time of the PBS-CL algorithm on w queries using a single
warp is O(log K

w + w), resulting in overall execution time
O(Q

p log K
w + Qw

p) for Q queries, which is the same as
for PBS-CF. However, PBS-CF requires this much time for

every input, while PBS-CL will result in no bank conflicts
on some inputs, taking only O(logw) steps in stage 2, and
resulting in overall execution time as low as O(Q

p logK)
on some inputs. Therefore, we claim that PBS-CL should
outperform both PBS and PBS-CF in practice.

V. EXPERIMENTAL RESULTS

A. Environment and Methodology

While our algorithms are generalizable to most modern
GPU hardware, we present results obtained on our specific
hardware and software environment, an nVidia GTX770
graphics card with the following specifications [29]:
• Number of SMs: 8
• Number of cores per SM: 192
• Number of threads per warp: 32
• Clock speed: 1046 MHz
• Global memory size: 4GiB
• Global memory peak throughput: 224.1 GiB/sec
• Shared memory size per SM: 48KiB
• Number of shared memory banks: 32
• Shared memory cell size: 64 bits
We implement the algorithms in C++ with the nVidia

CUDA (Compute Unified Device Architecture) API version
7 [3], using the Visual Studio 2013 IDE on Windows 8. We
employ full compiler optimization (-Ox) for all experiments
that measure execution time.

In all experiments we first generate the list K in shared
memory, sorted in non-decreasing order. We then generate Q
queries randomly chosen from K, stored in global memory.
Queries are divided evenly among all threads in a striped
manner to allow for coalesced global memory access. Each
thread reads a query, performs the search, and writes the
resulting predecessor result back to global memory, in a
coalesced manner. Each experiment is repeated 100 times
and we compute average execution time. Since the measured
standard deviation is at most 1 millisecond we omit error
bars from figures.

When running experiments on the GPU, we must select
the total number of thread blocks and the number of threads
per thread block. We found that it is sufficient to pick a
number of thread blocks large enough to provide work to
all SMs (and so that there are enough threads to utilize all
the cores). All our experiments are with 256 thread blocks.
The number of threads per block defines the size of thread
groups that share the same partition of shared memory. Since
our algorithms utilize increasingly large amounts of shared
memory as we increase K, each SM may only be able to
run very few thread blocks at a time. As a result, we find
that using the maximum number of threads per block (i.e.,
1,024) leads to the best performance.

B. Bank Conflicts

We wish to validate the worst-case estimate of the number
of memory accesses for the PBS algorithm in Section IV.

Figure 7: Estimated and measured bank conflicts (left verti-
cal axis) and average execution time (right vertical axis) for
4-Byte keys and 500 million queries vs. K, with both worst-
case and randomly generated queries for the PBS algorithm.

We cannot generate a worst-case Q for any arbitrary K since
the distribution of memory accesses among memory banks
depends on K and w. However, if K is a multiple of w2 a
worst-case set of queriesQ is obtained by having each thread
i within a warp query K[i · Kw + C], for any 0 ≤ C < K

w
(see Section IV). For this query set, the number of bank
conflicts incurred by PBS increases exponentially for logw
iterations (Figure 4), after which every iteration results in a
w-way bank conflict. We can thus estimate the total number
of memory accesses as:

APBS =

logK−1∑
i=0

max {2i, w}

= 1 + 2 + 4 + · · ·+ 2logw−1 + w(logK − logw)

= w(logK − logw + 1)− 1

Furthermore, this is the worst-case input for any K ≥ w
that is a power of 2. Extending this to smaller K values
allows for scenarios where there are fewer than w cells per
bank. However, if K < w2, the maximum number of bank
conflicts per iteration is limited to K

w , since there are fewer
than w total memory locations per bank.

We use the nVidia Nsight performance analysis tool
(Visual Studio Edition 4.6) [30] to measure bank conflicts
empirically. The above estimate, however, is for the total
memory accesses per warp, which includes the first access
at each cycle. Bank conflicts, on the other hand, are mea-
sured by Nsight as the total additional memory accesses.
Therefore, subtracting logK from our estimate gives us the
estimated number of bank conflicts. We measure the average
number of bank conflicts for both worst-case and randomly
generated query sets.

Figure 7 plots the number of bank conflicts (left vertical
axis) and the average execution time (right vertical axis) vs.
the number of search keys (K) for 4-Byte keys (the float

Figure 8: Estimated and measured bank conflicts (left verti-
cal axis) and average execution time (right vertical axis) for
8-Byte keys and 500 million queries vs. K, with both worst-
case and randomly generated queries for the PBS algorithm.

datatype), for both worst-case and randomly generated sets
of Q = 500M queries. The trend of the average execution
time closely follows that of the number of conflicts as K
varies. However, our conflict estimate in Figure 7 does
not match the measured worst-case number of conflicts.
To determine the cause of this mismatch we examine the
measured number of conflicts for each iteration of the search.
For K = w2 = 1, 024, since there are enough cells per
bank, the number of conflicts should exponentially increase
until each iteration has a w-way conflict (which would be
measured by Nsight as w−1 = 31). However, the measured
result shows that we do not exceed 16 conflicts per iteration.
It is not until K = 2, 048 that one reaches the expected
31 conflicts per iteration. It turns out that on our GPU
hardware each memory bank can be set to either 4- or
8-Byte mode, and in 4-Byte mode two values are stored
in each cell. This, combined with the multicast feature,
effectively doubles the number of memory banks when the
stride between queries is only 32. When K = 2, 048, the
stride becomes 64 and we reach our expected maximum
number of conflicts. To verify this explanation, Figure 8
shows results similar to Figure 7 but for 8-Byte (the double
datatype) values. Expectedly, our estimate exactly matches
the measured number of conflicts.

For both 4- and 8-Byte values, we see that both the
random and worst-case execution times have trends that
follow the number of bank conflicts. This indicates that
the number of bank conflicts is a performance driver for
the PBS algorithm, thus justifying the need to reduce this
number by developing algorithms such as our PBS-CF and
PBS-CL algorithms. Note, however, that the execution time
sharply increases for the largest K value in Figure 8. This is
attributed to inefficiencies in parallelism. When K = 4, 096,
with 8-Byte values, each thread block requires more than
half of the total shared memory on each SM. Therefore, only

Figure 9: Estimated and measured number of bank conflicts
(left vertical axis) and average execution time (right vertical
axis) for 8-Byte keys and 500 million queries vs. K, with
both worst-case and randomly generated queries for the
PBS-CL algorithm. The worst-case estimate is not visible
because it exactly matches the measured number of conflicts.

one thread block can be resident at a time, preventing latency
hiding and increasing synchronization overhead [1], [3].
Future GPUs will, undoubtedly, have larger shared memory
sizes, alleviating this problem and allowing larger lists K to
be searched with this method.

The results in Figures 7 and 8 are for the PBS algorithm,
and an important conclusion from these results is that
the number of bank conflicts is strongly correlated to the
algorithm’s execution time. While this cannot be the case
for the conflict-free PBS-CF algorithm, one may wonder
whether a similar observation holds for the PBS-CL algo-
rithm. Figure 9 is similar to Figure 8 but shows results for the
PBS-CL algorithm. As for the PBS algorithm, our estimate
exactly matches the measured number of bank conflicts.
Unlike for the PBS algorithm, however, the performance
of the PBS-CL algorithm is not driven by bank conflicts.
Furthermore, the average and worst-case performance differ
by at most 5.5%, indicating that the PBS-CL algorithm is
more resilient to the distribution of query values.

C. Algorithm Scalability

In this section we compare the execution time of our three
algorithms (PBS, PBS-CF, and PBS-CL). Figures 10 and 11
show average execution vs. K for 4-Byte and 8-byte values
(Q = 500M). For low values of K, i.e., with few search
keys, PBS does not suffer from many bank conflicts (with
32 elements each bank has only 1 cell), so it performs as
well as PBS-CL and better than PBS-CF. However, as K
increases, its performance degrades quickly.

The results also show that while PBS-CF suffers from
overhead in both experiments, it performs significantly
worse with the 8-Byte values. We see an average overhead
of 0.061 seconds and 0.153 seconds when compared with

Figure 10: Average execution time vs. K for the PBS, PBS-
CF, and PBS-CL algorithms, with 4-Byte keys and queries.

Figure 11: Average execution time vs. K for the PBS, PBS-
CF, and PBS-CL algorithms, with 8-Byte keys and queries.

PBS-CL with 4-Byte and 8-Byte values, respectively. We
postulate that this is due to the linear search component
during stage 2 of the algorithm. With an 8-Byte value,
the same number of elements can be accessed per cycle,
but computation takes longer, making the algorithm more
compute-bound. By contrast, the PBS-CL algorithm per-
forms only logw computations during stage 2, allowing it
to perform better for more computationally intensive data
types. Overall, the PBS-CL achieves the lowest average
execution times across the board.

D. Impact of Global Memory Accesses

The high relative latency of global memory access has
motivated work on reducing accesses and maximizing
throughput [1], [31]. Since our query set, Q, resides in
global memory (and we write each query result back), we
investigate the impact of global memory accesses on the
execution time of our algorithms. As discussed in Sec-
tion IV, the PBS algorithm should run in Ω(w · Qp log K

w2)
time (in the worst case), and our improved algorithms in
O(Q

p log K
w + Qw

p) time. Therefore, we presume that these
algorithms have high enough computational complexity to
prevent them from being global-memory-bound. To verify
this presumption, we measure the performance of a global
memory ’read/write’ baseline that simply reads, increments,

Algorithm Execution Time Bandwidth memory stalls
PBS 0.323 sec 23.76 GB/sec 1.79%
PBS-CF 0.306 sec 25.14 GB/sec 2.33%
PBS-CL 0.148 sec 48.94 GB/sec 5.48%
Read/write 0.051 sec 160.2 GB/sec 50.42%

Table I: Execution time and global memory statistics for
each algorithm using 500M queries, 4096 8-byte shared
memory keys. Bandwidth and memory stalls are obtained
from the nSight performance analysis tool [30].

and writes each query. Table I compares this baseline and
our three algorithms using average execution time as well
as two global memory metrics obtained from the nSight
performance analysis tool: bandwidth and memory stalls.
Bandwidth is the average utilized global memory bandwidth
and memory stalls are the total % of cycles that are stalled
due to ’memory dependencies’. Note that memory stalls
include cycles stalled due to both global and shared memory,
so the number of memory installs is an upper bound on
cycles that are global-memory-bound.

The results shown in Table I indicate that none of our
three search algorithms is global-memory-bound, while the
read/write baseline clearly is. The peak bandwidth for our
hardware is 224.1 GB/sec, though in practice one can
typically obtain around 70% of this peak [32]. Thus, our
read/write baseline, obtaining 160.2 GB/sec (71.5% of the
peak), is bound by global memory bandwidth. Our other
algorithms, however, utilize much less global memory band-
width. Furthermore, during the baseline experiment, over
half of all cycles were stalled due to memory dependencies,
while this caused less than 5.5% of cycles to stall when
running our algorithms. We conclude that, while the exe-
cution time of the baseline read/write is relatively close to
our algorithms (29% of PBS-CL), our algorithms are not
global-memory-bound and utilize the compute resources of
the GPU efficiently.

VI. CONCLUSION

In this paper we have analyzed the performance of algo-
rithms that solve the predecessor search problem on modern
GPU hardware. We find that performing a naive parallel
binary search algorithm (PBS) over search keys in shared
memory leads to performance degradation due to bank
conflicts. In the worst case, the performance degradation
asymptotically leads to Ω(w · Qp log K

w2) shared memory ac-
cesses, drastically reducing inter-warp parallelism. As shared
memory sizes and, consequently, the number of memory
banks grow over time, the impact of bank conflicts on
runtimes will become even more pronounced.

To remedy this issue, we introduced two improved search
algorithms, the conflict-free PBS-CF and the conflict-limited
PBS-CL. The PBS-CF algorithm performs the search with-
out any shared memory bank conflicts, though it is not work

optimal and requires O(w− logw) additional operations per
query. PBS-CL performs the optimal Θ(logK) operations
per query and incurs w− 1 total bank conflicts in the worst
case. Even on current hardware with relatively small w =
32, our algorithms already provide a clear advantage over
the PBS algorithm. We have verified this claim via a series
of experiments with implementations of the algorithms on
GPU hardware. While both of our improved algorithms scale
better than the PBS algorithm, we have found that PBS-CL
provides the largest performance gain for the majority of
problem instances. It achieves its best relative performance
when searching large lists stored in shared memory, with a
maximum speedup of 2.98 over the PBS algorithm. PBS-CL
scales well as K increases, requiring only O(Q

p log K
w + Qw

p)
shared memory accesses.

A clear future direction would be to apply our PBS-CL
algorithm to even larger datasets, by performing queries
on keys loaded in batches from global memory. Another
direction would be to enhance existing applications that
utilize binary search and quantify the impact on overall per-
formance. Searching is such a fundamental and ubiquitous
operation that we would expect our work to be beneficial to
many such applications. Finally, a broader avenue for future
research would be to apply the insights gained from this
work to more complex search techniques and data structures,
e.g. B-Trees.

REFERENCES

[1] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W.-m. W. Hwu, “Optimization principles and
application performance evaluation of a multithreaded GPU
using CUDA,” in Proc. of PPoPP. ACM, 2008, pp. 73–82.

[2] T. A. T. Han, “hiCUDA: High-level GPGPU programming,”
in Proc. of TPDS, vol. 22, 2010, pp. 78–90.

[3] NVIDIA, “CUDA programming guide 7.0,” 2015. [Online].
Available: http://docs.nvidia.com/cuda

[4] D. B. Kirk, Programming Massively Parallel Processors.
Elsevier Science, 2012.

[5] J. JaJa, Introduction to Parallel Algorithms. Reading, MA:
Addison-Wesley, 1992.

[6] J. H. Reif, Synthesis of Parallel Algorithms, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1993.

[7] N. Fauzia, L. N. Pouchet, and P. Sadayappan, “Characterizing
and enhancing global memory data coalescing on GPUs,” in
Proc. of CGO, 2015, pp. 12–22.

[8] D. G. Merrill and A. S. Grimshaw, “Revisiting Sorting for
GPGPU Stream Architectures,” in Proc. of PACT. ACM,
2010, pp. 545–546.

[9] D. Merrill and A. Grimshaw, “Parallel Scan for Stream
Architectures,” Department of Computer Science, University
of Virginia, Tech. Rep. CS2009-14, 2009.

[10] K. Nakano, “Simple memory machine models for GPUs,” in
Proc. of IPDPSW, May 2012, pp. 794–803.

[11] ——, “The hierarchical memory machine model for GPUs,”
in Proc. of IPDPSW, May 2013, pp. 591–600.

[12] S. Sengupta, M. Harris, and M. Garland, “Efficient parallel
scan algorithms for GPUs,” NVIDIA Technical Report NVR-
2008-003, 12 2008.

[13] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan
primitives for GPU computing,” Graphics Hardware, 2007.

[14] Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and
J. Manfedelli, “Fast scan algorithms on graphics processors,”
in ICS, 2008.

[15] N. Leischner, V. Osipov, and P. Sanders, “GPU sample sort,”
in Proc. of IPDPS, April 2010, pp. 1–10.

[16] F. Dehne and H. Zaboli, “Deterministic sample sort for
GPUs,” vol. abs/1002.4464, 2010. [Online]. Available:
http://arxiv.org/abs/1002.4464

[17] Z. Wei and J. JaJa, “Optimization of linked list prefix com-
putations on multithreaded GPUs using CUDA,” in Proc. of
IPDPS, 2010.

[18] A. Davidson, S. Baxter, M. Garland, and J. Owens, “Work-
efficient parallel GPU methods for single-source shortest
paths,” in Proc. of IPDPS, 2010, pp. 78–90.

[19] D. Merrill, M. Garland, and A. Grimshaw, “Scalable
GPU graph traversal,” SIGPLAN Not., vol. 47,
no. 8, pp. 117–128, Feb. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2370036.2145832

[20] K. Kaczmarski, “Experimental B+-tree for GPU,” in Proc. of
ADBIS, vol. 2, Rome, Italy, 2011, pp. 232–241.

[21] ——, “B-tree optimized for GPGPU,” in Proc. of OTM 2012,
Rome, Italy, 2012, pp. 843–854.

[22] A. Shekhar, “Parallel binary search trees for rapid IP lookup
using graphic processors,” in Proc. of IMKE, 2013, pp. 176–
179.

[23] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen,
T. Kaldeway, V. Lee, S. Brandt, and P. Dubey, “FAST:
fast architecture sensitive tree search on modern CPUs and
GPUs,” in Proc. of SIGMOD, Indianapolis, Indiana, USA,
2010.

[24] J. Soman, K. Kothapalli, and P. J. Narayanan, “Discrete range
searching primitive for the GPU and its applications,” J. Exp.
Algorithmics, vol. 17, pp. 4.5:4.1–4.5:4.17, Oct. 2012.

[25] O. Green, R. McColl, and D. A. Bader, “GPU merge path: a
GPU merging algorithm,” in Proc. of ICS, 2012, pp. 331–340.

[26] B. Catanzaro, A. Keller, and M. Garland, “A decomposition
for in-place matrix transposition,” in Proc. of PPoPP, 2014.

[27] N. Sitchinava and V. Weichert, “Provably efficient GPU
algorithms,” CoRR, vol. abs/1306.5076, 2013. [Online].
Available: http://arxiv.org/abs/1306.5076

[28] S. Baxter, “Modern GPU,” 2013. [Online]. Available:
http://nvlabs.github.io/moderngpu/

[29] NVIDIA, “GeForce GTX770 specifications,” 2014. [On-
line]. Available: http://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-770/specifications

[30] ——, “Nsight,” 2015. [Online]. Available:
http://www.nvidia.com/object/nsight.html

[31] H. Wong, “Demystifying GPU microarchitecture through
microbenchmarking,” in Proc. of ISPASS, 2010, pp. 235–246.

[32] P. Enfedaque, F. Auli-Llinas, and J. Moure, “Implementation
of the DWT in a GPU through a register-based strategy,” IEEE
Trans. PDS, vol. PP, no. 99, 2014.

