
I/O-efficient Range Minima Queries

Peyman Afshani1⋆ and Nodari Sitchinava2

1 MADALGO, Department of Computer Science, University of Aarhus, Denmark
peyman@madalgo.au.dk

2 Department of Information and Computer Sciences, Univ. of Hawaii – Manoa, USA
nodari.sitchinava@hawaii.edu

Abstract. In this paper we study the offline (batched) range minima
query (RMQ) problem in the external memory (EM) and cache-oblivious
(CO) models. In the static RMQ problem, given an array A, a query
rmqA(i, j) returns the smallest element in the range A[i, j].

If B is the size of the block andm is the number of blocks that fit in the in-
ternal memory in the EM and CO models, we show that Q range minima
queries on an array of size N can be answered in O

(

N
B

+ Q

B
logm

Q

B

)

=
O(scan(N)+sort(Q)) I/Os in the COmodel and slightly better O(scan(N)+
Q

B
logm min{Q

B
, N
B
}) I/Os in the EM model and linear space in both mod-

els. Our cache-oblivious result is new and our external memory result is
an improvement of the previously known bound. We also show that the
EM bound is tight by proving a matching lower bound. Our lower bound
holds even if the queries are presorted in any predefined order.

In the batched dynamic RMQ problem, the queries must be answered in
the presence of the updates (insertions/deletions) to the array. We show
that in the EMmodel we can solve this problem in O

(

sort(N) + sort(Q) logm
N
B

)

I/Os, again improving the best previously known bound.

1 Introduction

Given an array A on N entries, the range minimum query (RMQ) rmq(i, j),
such that 1 ≤ i ≤ N , asks for the item in the range A[i..j] with the smallest
value.3 Range minima queries have many practical applications such as data
compression, text indexing and graph algorithms and they have been studied
extensively. In internal memory, there are many papers that deal with answering
range minima queries in constant time and the main basic idea is to use Cartesian
trees [12] and to find least common ancestors [10] (see also [7, 8, 3] for a subset
of other results on reducing space and other improvements).

In this paper we are interested in the RMQ problem in the external mem-
ory model. The external memory model (also known as the I/O model or disk

⋆ Work supported in part by the Danish National Research Foundation grant DNRF84
through Center for Massive Data Algorithmics (MADALGO)

3 The query might ask for the index of the item instead, but this variation is an easy
adaptation of the known solutions – including the ones in this paper.



Problem I/Os Space Notes

Static RMQ, EM O((n+ q) logm(n+ q)) O(Q+N logm N) [5]

Static RMQ, EM O((n+ q) logm(n+ q)) O(N +Q) [2]

Static RMQ, EM O(n+ q logm min {q, n}) O(N +Q) new

Static RMQ, EM, CO Ω(n+ q logm min {q, n}) - new

Static RMQ, CO O(n+ q logm q) O(N +Q) new

Dynamic RMQ, EM O((n+ q) log2m(n+ q)) O(N +Q) [2]

Dynamic RMQ, EM O((n+ q logm q) logm n) O(N +Q) new

Table 1. Previous and new results on static and dynamic RMQs in the external mem-
ory model (EM) and the cache-oblivious model (CO).

access model (DAM)) was introduced by Aggarwal and Vitter [1] and addresses
situations where the data is so big that it can only be stored in slow external
storage. The external storage is divided into blocks of size B and all the compu-
tations must be done in the internal memory of size M . Each data transfer, an
input/output (I/O) operation, between the external and internal memory can
transfer a single block. The complexity metric of the model, I/O complexity,
measures the number of such transfers. In this paper we use the common nota-
tions n = N/B, m = M/B, q = Q/B, and sort(N) = O (n logm n) – the I/O
complexity to sort an array of N elements.

In the external memory model, the online RMQ problem where we require
that the answer to each query must be provided immediately, one must spend
at least one I/O operation to report the output and, therefore, constant time
solutions in the RAM model translate to the optimal solutions in the EM model
as well. Instead, Chiang et al. [5] considered the offline version of the problem. In
the offline (batched) range minima problem we are given a sequence of Q range
minima queries rmq(i, j) and we are asked to answer each query eventually and
in arbitrary order by presenting the output as pairs of the input queries and the
corresponding answers.

Previous results in the EM model. Chiang et al. [5] presented an algorithm that
answers a batch of Q queries using O (sort(N +Q)) = O ((n+ q) logm(n+ q))
I/Os and O (Q +N logm N) space. Very recently, Arge et al. [2] improved the
space to O(N +Q) while keeping the same I/O complexity. They also showed a
solution for the dynamic version of the problem where the sequence of queries is
intermixed with insertions and deletions of entries to and from the array. Their
solution requires O

(

(n+ q) log2m(n+ q)
)

I/Os. They left a few open questions
and in fact they explicitly conjectured that even the static range minima queries
should require Ω((n + q) logm(n + q)) I/Os in the worse case. The conjecture
is non-trivial and interesting because in internal memory, the constant time per
query trivially implies O(N +Q) time to answer Q queries in an array of size N .

2



Our Results. We offer a number of improvements to both static and dynamic
batched RMQs. In Section 2, we prove a lower bound of Ω(n+q logm min {q, n})
I/Os for the static batched RMQ problem, partially confirming the suspicion of
Arge et al. [2] that it is impossible to achieve linear O(n+ q) I/O complexity in
the EM model. Our lower bound assumes the standard indivisibility of individual
records and holds even if the queries are presorted. In the process of proving the
lower bound we present an algebraic notation which simplifies the presentation
of permutation lower bound proofs and might be of independent interest.

In Section 3 we present a matching upper bound in the EM model, thus
proving that our lower bound is asymptotically optimal. Our upper bound im-
mediately implies an improvement to the dynamic version of the RMQ problem
by Arge et al. [2], which can be solved in O(sort(N) + sort(Q) · logm n) I/Os
(Section 5).

In Section 4 we present the first solution for the static RMQs in the cache-
oblivious model4. The cache-oblivious (CO)model [9] is similar to the EM model,
except the algorithms are not allowed to make use of the parameters M and B.
Instead, the data transfer between the external and internal memory is performed
automatically by a separate paging algorithm implemented by the system with a
reasonable cache replacement strategy, e.g., least recently used (LRU) strategy.
Our cache-oblivious solution requires O(n + q logm q) beating all the previous
results in the EM model.

Table 1 lists our results in comparison with the previous results in the external
memory and the cache-oblivious models.

Finally, in Section 5 we discuss some additional simple improvements if some
blocks of the input array are not covered by any queries.

2 Lower Bound In Both Models

In this section, we prove a lower bound showing that under a standard assump-
tion of indivisibility of individual items it is impossible to answerQ RMQ queries
on a static array of size N in fewer than Ω(n+ q logm min{q, n}) I/Os.

Atomic elements. We assume each query is accompanied by a label that is a
string obtained by concatenating the representation of its left and right bound-
aries. So, a query qi = [ℓi, ri] is represented by (sℓiri , ℓi, ri), where sℓiri is its
label. Query labels and values in the array A are considered atomic elements.

The Model. We conceptually view the external memory as a (horizontal) tape
of infinite size consisting of cells arranged from left to right that are also orga-
nized into blocks of B cells. Each cell can store one atomic element. Any other
information can be stored and accessed for free by the algorithm (i.e., we as-
sume unlimited computational power and full information). The only restriction
placed on the algorithm is that it cannot create new atomic elements, but can
only make copies of the existing ones. Thus, to manipulate labels or values, the

4 Previously, only online results were known. E.g., see [6, 11].

3



algorithm can load one block (containing some atomic elements) from the tape
into the internal memory or it can select B atomic elements from the internal
memory and write copies of them somewhere on the tape as one block. The
algorithm starts with a tape that contains the input values of A in n blocks and
the Q queries in the q following blocks and it must end with a tape configuration
where each query label is followed by its answer (i.e., a pair (sℓiri , A[j]) where
A[j] is the answer to the query [ℓi, ri] labeled sℓi,rj).

Sequences. In this model, a subset of K cells naturally defines a sequence of K
atomic elements, by considering the atomic elements stored in the cells in the
left-to-right order. In the rest of this section, we slightly extend the definition of a
sequence: a sequence representation (seq-rep for short) is a sequence of K atomic
elements that is stored in O(K/B) blocks5 on the tape from left to right. Note
that we allow some inefficiency in the storage as there could be blocks that store
only a few atomic elements. Observe that one sequence can have two different
seq-reps S1 and S2 and the atomic elements of each block could occupy different
addresses within that block. Nonetheless, one can convert one representation
into another in O(K/B) I/Os. This implies that for a given sequence, all the
seq-reps are essentially equivalent up to an additive term of O(K/B) I/Os.

The Main Idea and Intuition. We prove our lower bound using known hardness
results for the problem of permuting array entries. Intuitively, the hard input
instance to the RMQ algorithm is a set of queries where the left end points and
the right end points correspond to two very “different” permutations; our lower
bound follows from the fact that the permutation corresponding to the left end
points needs Ω(min {Q, q logm n} I/Os to be transformed into the permutation
corresponding to the right end points.

Although our lower bound approach does not introduce fundamentally new
techniques, it does require rather complicated logical steps. To follow the argu-
ment with greater ease, we introduce a new algebraic notation, which could be
considered an interesting way of presenting permutation lower bounds.

An Algebraic Notation. Let X := X1, . . . , XN be a sequence of N atomic ele-
ments. For a given permutation π : {1, · · · , N} → {1, · · · , N}, π(X) is defined as
the sequence Xπ(1), . . . , Xπ(N) and we denote Xπ(i) with π(i)(X). Furthermore,
if we can permute one seq-rep of π(X) into another seq-rep of κ(X) using t
I/Os, then we can permute any seq-rep of π(X) into any seq-rep of κ(X) using
t+O(n) I/Os (n = N/B). Note that we can also permute any seq-rep of κ(X)
into any seq-rep of π(X) using the same t + O(n) I/Os. We denote such trans-

formation with π(X) oo
t+O(n)

///o/o/o
κ(X). Easy to see but important consequences of

the indivisibility assumption are summarized below.

5 The O-notation here hides a universal constant that does not depend on any machine
or input parameter. We need this constant since during some steps of our proof, we
will be working with the sequences that do not necessarily pack B elements in each
block.

4



Observation 1 Consider two sequences of symbols X := X1, . . . , XN and Y :=
Y1, . . . , YN . Let κ, π and ϕ be three permutations. The following properties hold
in the indivisibility model regarding the seq-reps of these sequences.

(a) If π(X) oo
t+O(n)

///o/o/o
κ(X) then π(Y) oo

t+O(n)
///o/o/o
κ(Y)

(b) If π(X) oo
t+O(n)

///o/o/o
κ(X) then π(ϕ(X)) oo

t+O(n)
///o/o/o
κ(ϕ(X)) and ϕ(π(X)) oo

t+O(n)
///o/o/o ϕ(κ(X))

(c) If π(X) oo
t+O(n)

///o/o/o
κ(X) and κ(X) oo

r+O(n)
///o/o/o ϕ(X) then π(X) oo

t+r+O(n)
///o/o/o ϕ(X).

Remark. The constants hidden in the O-notations above can grow. This is be-
cause we are working with any seq-rep of permutations rather than specific ones.

The Query Order. We actually prove a stronger lower bound claim. We show
that the problem stays hard even if the queries are given in the order of the left
end points, or the right end points, or any other ordering that does not depend
on the input array A. We model this claim precisely. Let Q be the list of queries.
Before showing the algorithm the input set A, we allow the algorithm to pick
whatever order that it desires for the queries, i.e., the algorithm can permute
the queries for free. Once that order is picked (for example, the algorithm can
sort the list of queries by the left end points), the algorithm is given an array
A. We show that even in this relaxed formulation, the algorithm cannot achieve
O(n+ q) bound on the number of I/Os.

Observe in the case Q < N we simply need to prove a lower bound for Q
queries and an input array of size Q since the upper bound in the previous
section has linear dependency on n. Thus, the non-trivial case of the problem
is when Q = Ω(N). Due to this, w.l.o.g, we assume the following in the rest of
this section: the range of the queries run from 1 to N and Q = αN where α ≥ 1
is an integer. We also need the following lemma, which is an easy generalization
of the permutation lower bound [1].

Lemma 1. Let N and α be two integral parameters, and let S1 be the non-
decreasing sequence of length αN composed of α repetitions of i, i = 1, · · · , N .
Assuming 2 < B < cM < N for a constant c, there exists a permutation S2 of
S1, s.t., permuting S1 into S2 requires Ω

(

min{αN, αN
B

logm
N
B
}
)

I/Os.

Proof. The proof is almost identical to the one presented by Aggarwal and Vit-
ter [1] for the general permutations. The only difference is that we need to
calculate the number of permutations of S1. Using straightforward combina-
torial arguments and Stirling’s formula, the number of permutations of S1 is
∏N−1

i=0

(

α(N−i)
α

)

≥
(

1√
α

)N

(N !)α. Using this bound instead of N ! at the right

hand side of the inequality in Section 4 of Aggarwal and Vitter’s paper [1] gives
the claimed bound. ⊓⊔

Now we are ready to prove our lower bound result.

Theorem 1. A set of Q range minima queries on a static array of size N
requires Ω(min {Q, q logm n} I/Os in the worst case, assuming indivisibility.

5



Proof. Consider the sequences S1 and S2 defined in Lemma 1; observe both have
α repetitions of every value i between 1 and N . We create the sequence of queries
Q based on S2 in the following way: if the i-th element of S2 is j, we create the
query interval [⌊i/α⌋, j] with its appropriate label. We presentQ to the algorithm
and let κ(Q) be the ordering of the queries picked by the algorithm (remember
this is done for free). Note that Q is sorted by the left end point.

We now define two different input arrays, A1[1, · · · , N ] and A2[1, · · · , N ]: A1

is strictly increasing and A2 is strictly decreasing. This means, the left end points
of the queries give the indices of the answers for the queries on A1, while the
right end points do the same on A2. However, remember that the final answer
should contain the labels of the queries. We claim that one of these two inputs
should be difficult to solve regardless of choice of κ.

Let r1 be the number of I/Os used by an algorithm to solve the problem when
presented with A1 and σ1 be the permutation that describes the order of the
atomic elements (the query label, value pair) in the output. For simplicity, we
assume Q is the sequence of the query labels. Observe that σ1(κ(S1)) describes
the sequence of indices of the answers to the queries in the first input: a query
interval [i, j] in the output is followed by A1[i] and since queries were originally
ordered by the left end point, σ1(κ(S1)) gives the ordering of the indices of the
answer.

Now consider the input A2. Let r2 be the number of I/Os used by an algo-
rithm to solve the problem when presented with A2 and σ2 be the permutation
that describes the order of the atomic elements (the query label, value pair)
in the output. A query interval [i, j] in the output if followed by A2[j]. This
means the sequence of indices of the answers to the queries in the second input
is described by σ2(κ(ϕ(S1))) where ϕ is a permutation such that ϕ(S1) = S2.

Thus, we have the following (explanations below):

κ(Q) oo
r1

///o/o/o σ1(κ(Q)) (1)

κ(Q) oo
r2

///o/o/o σ2(κ(Q)) (2)

S1
oo

r1
///o/o/o σ1(κ(S1)) (3)

S1
oo

r2
///o/o/o σ2(κ(ϕ(S1))) (4)

The above equations describe how the order of the atomic elements in the
output correspond to the order of the atomic elements given to the algorithm,
with the difference that (for simplicity) instead of dealing with the values in the
arrays A1 and A2, we are dealing with their indices; S1 in the left hand side of
the equations correspond to the indices of the values in arrays A1 and A2.

Applying Observation 1(c) to (1) through (4), we get

σ1(κ(Q)) oo
r1+r2+O(q)

///o/o/o σ2(κ(Q)) (5)

σ1(κ(S1)) oo
r1+r2+O(q)

///o/o/o σ2(κ(ϕ(S1))) (6)

6



Applying Observation 1(a) to (5) we get σ1(κ(S1)) oo
r1+r2+O(q)

///o/o/o σ2(κ(S1)). Finally,

with (6) and Observation 1(c) we obtain σ1(κ(S1)) oo
O(r1+r2+q)

///o/o/o σ1(κ(ϕ(S1))). Set

ϕ as an inverse of σ1 in Observation 1(b) and this gives κ(S1) oo
O(r1+r2+q)

///o/o/o
κ(ϕ(S1))

and similarly S1
oo

O(r1+r2+q)
///o/o/o ϕ(S1) = S2. Thus, by Lemma 1, we must have

r1 + r2 = Ω(min{Q, q logm n}), so the problem is hard on either A1 or A2. ⊓⊔

3 Solution In The External Memory Model

In this section we prove a matching upper bound for the static RMQ problem
in the EM model.

Theorem 2. A set of Q range minima queries on a static array of N elements
can be answered in O(n+ q ·min {logm n, logm q}) I/Os and O(N +Q) space.

Note that when Q = Θ(N) the I/O complexity in the above theorem matches
the I/O complexity O(sort(N +Q)) = O((n+ q) logm(n+ q)) of Arge et al. [2].
Thus, we concentrate on two cases: (i) when N = ω(Q) and (ii) when Q = ω(N).

Without loss of generality we assume that each query rmq(i, j) has a unique
identifier – it can be, for example, the initial index in the list of the input queries.

Lemma 2. The problem of answering a set of Q range minima queries on a
static array A of N = ω(Q) elements can be reduced to the problem of answering
Q range minima queries on a static array A′ of size O(Q) in O(n + q logm q)
I/Os and O(N +Q) = O(N) space.

Proof. Consider any two adjacent array entries A[i] and A[i+1]. Observe that if
no query starts or ends with an index i and i+1, then the larger of the two entries
A[i] and A[i + 1] will not be the answer to any of the queries. More generally,
for any contiguous region of the array A[i..j], i < j, if there are no queries with
endpoint indices in the range [i, j], then we can compact the subarray A[i..j]
to a single element that is the minimum in the range A[i..j] without affecting
the answers to the queries. Since there are 2Q query endpoints, the size of the
compacted array is O(Q). Obviously, if we compact the input array to a smaller
array, we have to adjust the query endpoints appropriately, which we show how
to do next.

For each query rmq(i, j) we create two items ei and ej associated with the
two endpoints of the query. Each endpoint ei (resp. ej) contains full information
about the query rmq(i, j), i.e., the unique identifier of the query and the index
j (resp. i) of the other endpoint.

We sort the set of endpoints ex by their indices x. By simultaneously scanning
the input array and the sorted set of endpoints we can identify the ranges of array
indices that contain no query endpoints. During the scan we can also identify
the minimum within each range and copy them into a new array A′. Let s[i] be
the number of items among A[1..i] that were not copied to A′. We can compute

7



the values s[i] for all 1 ≤ i ≤ N during the scan. To adjust the queries, we need
to update the index of each query endpoint ei from i to i − s[i]. This can be
accomplished with a simultaneous scan of the sorted endpoints and the values
s[i]. Finally, a sort of the endpoints by the query identifiers will place the two
endpoints of each query in adjacent memory locations and with a final scan of
this sorted sequence we can create the updated queries rmq(i − s[i], j − s[j])
for each original query rmq(i, j). The I/O complexity of the whole process is
O(n+ sort(Q)) = O(n+ q logm q) I/Os because it is just O(1) scans of arrays of
size O(N) and O(1) sorts of sets of size O(Q). ⊓⊔

Lemma 3. A set of Q range minima queries on a static array A of N = o(Q)
elements can be answered in O(q logm n) I/Os and O(N +Q) = O(Q) space.

Proof. In the algorithm of Arge et al. [2], it is difficult to avoid the O(sort(N+Q))
cost; to summarize, they do the following: first they build a full k-ary tree T
for k ∈ Θ(m) on the array A, with each of Θ(N/M) leaves associated with a
contiguous range of Θ(M) entries. The algorithm processes the queries down
this tree level by level, by computing a running answer for each endpoint of a
query and distributing the endpoints to the appropriate children of a node. At
the leaves of the tree, the answer to each query rmq(i, j) is the minimum of the
running answers at the two endpoints ei and ej. The two endpoints might be in
two different leaves of the tree, i.e., in arbitrary locations in external memory.
To compute the minimum of each pair I/O-efficiently, the algorithm sorts the
endpoints by the query identifier, which results in the two endpoints being in
adjacent memory locations and the minimum can be computed with a simple
scan. The I/O complexity of this solution consists of O(sort(N)) I/Os to build
the tree, O(q logm(N/M)) to propagate all queries down to the leaves of the tree
(the distribution involves scanning Q queries at each of O(logm(N/M)) levels of
the tree), and O(sort(Q)) I/Os to compute the minima of pairs of endpoints at
the leaves of the tree. Note, when N = o(Q) the I/O complexity of this solution
reduces to O(sort(Q)) = O(q logm q) I/Os.

To improve the I/O complexity to O(q logm n) we show how to compute
the minima of the pairs of endpoints at the leaves of the tree more efficiently.
In particular, we observe that the distribution of the query endpoints to the
children nodes of the tree is performed stably – that is, the relative order of
the queries distributed to each child node is the same as in the (parent) node
itself. Thus, we maintain the invariant that at each node the query endpoints
are sorted by the initial order of the input queries. Initially, at the root of the
node, the invariant is trivially true and the stability of the distribution ensures
that the invariant is maintained at each consequent level.

Once the query endpoints reach the leaf level, we do the following. We load
O(M) array entries associated with a leaf into internal memory and scan the
endpoints within that leaf, finding and reporting the answers to queries that
contain both endpoints within that leaf. Once a query answer is determined
unambiguously, we stop considering it any further. At this point, instead of
sorting the remaining endpoints, we propagate them up the tree, merging them

8



by comparing the original indices of the query in the input set. Since the query
endpoints at each node are sorted in this order, we can perform this merge I/O
efficiently and if the two endpoints ei and ej of a query rmq(i, j) are present in
the subtrees rooted at two children wk and wk′ of some tree node v, the merging
process at node v will place them next to each other and we can compute the
minima among both endpoints, report it as the answer to query rmq(i, j) and
stop considering the two endpoints any further.

The I/O complexity of the merging process is O(n+ q) to process the leaves
and O(q logm(N/M)) I/Os to perform the merge up the tree. Thus the total I/O
complexity of the whole algorithm adds up to O(q logm n) I/Os. ⊓⊔

The proof of the Theorem 2 follows from Lemma 2 and Lemma 3.

4 Solution In The Cache-Oblivious Model

In this section we will prove the following result:

Theorem 3. In the cache-oblivious model a set of Q range minima queries on
an array of size N can be answered in O(n + q logm q) I/Os, assuming M =
Ω(B1+ǫ).

First, note that Lemma 2 holds in the cache-oblivious model because the
reduction consists of a constant number of scans and sorts, which can be ac-
complished cache-obliviously [9]. Thus, it only remains to show how to answer
Q range minima queries on an array of size N = O(Q) in O(q logm q) I/Os.

The static solution of Arge et al. [2] can be viewed as using the top-down
distribution sweeping approach, where at each node of the recursive tree the
queries are considered in some predetermined order (a sweep of queries) and dis-
tributed to the Θ(M/B) children of the node. Brodal and Fagerberg [4] presented
a framework to implement distribution sweeping paradigm cache-obliviously by
a bottom-up recursive process, where at each recursive level the objects of the
children nodes are merged. We will show how to answer the range minima queries
by merging the queries bottom up instead, thus allowing us to use the cache-
oblivious distribution sweeping framework of Brodal and Fagerberg.

Again, without loss of generality, we assume that each query rmq(i, j) has a
unique identifier.

We proceed as follows. For each query rmq(i, j) we create two items ei and
ej associated with the two endpoints of the query. Each endpoint ei (resp. ej)
contains full information about the query rmq(i, j), i.e., the unique identifier
of the query and the index j (resp. i) of the other endpoint. Each endpoint ex
we will maintain a running answer rmqex . At the end of the computation, both
rmqei and rmqej will hold the answer to the query rmq(i, j).

Initially, we sort the endpoints ex by its index x and initialize rmqei = A[i]
and rmqej = A[j]. Next we perform the following merging algorithm. Concep-
tually, we can visualize a merge tree built on top of the sorted list of end-
points with a single endpoint at each leaf of the merge tree. A node v of the

9



tree represents a contiguous range R(v) of the indices in the array, such that
R(v) = R(wL)∪R(wR), where wL and wR are the two children of v. Each node
v of the tree maintains minS(v) – the smallest array entry among the indices
in its range R(v). This value is defined as rmqe at the leaf node e and can be
computed at each internal node v as minS(v) = min{minS(wL),minS(wR)}
and is updated as the first step before the merging at that node begins.

During the merge up the tree the endpoints are compared by the unique
identifiers of the queries associated with that endpoint. For the merge step at
each internal node v with the two children wL and wR we do the following.
If the next two smallest endpoints ei and ej are for the same query rmq(i, j),
we set rmqi = rmqj = min{rmqi, rmqj} (the final answer to query rmq(i, j))
and the two endpoints are discarded and never considered again in the merging
process. If the next two smallest endpoints are not of the same query, assume the
smallest endpoint e is the left endpoint of a query (the right endpoints are treated
symmetrically). Then if e is coming from the right child wR, we propagate e to
the output of node v without altering it. If e is coming from the left child wL,
we set rmqe = min{rmqe,minS(wR)} and then propagate it to the output of v.

Lemma 4. At the end of the merging process, all pairs of items ei and ej as-
sociated with each query rmq(i, j) store the answer to the query in rmqei and
rmqej .

Proof. The proof is by induction on the level of recursion. First observe that
at node v, if ei ∈ R(wL) and ej ∈ R(wR) and they represent the same query
rmq(i, j), they will be considered together at some point during merging at
node v, because the comparisons are performed by the query identifiers, which
are unique and equal for ei and ej. Thus an item e ∈ R(v) is propagated to the
output of a node v iff e’s other endpoint is not inR(v)’s subtree. Let Av represent
the subarray of A which is defined by the indices in the range R(v). Then the
correctness of the algorithm follows from the fact that for i < j, if ei ∈ wL and
ej 6∈ wR, rmqAwR

∪AwL
(i,+∞) = min{rmqAwL

(i,+∞),rmqAwR
(−∞,+∞)},

and if ei ∈ wR and ej 6∈ wR, rmqAwR
∪AwL

(i,+∞) = rmqAwR
(i,+∞). The case

of ej is symmetrical. ⊓⊔

Now we are ready to prove Theorem 3 stated at the beginning of this section.

Proof (of Theorem 3). Creation of the items can be performed with a single
scan of the queries, which is trivially cache-oblivious. The initial sorting of the
items is implemented using one of the cache-oblivious sorting algorithms [9].
The initialization of rmqe is implemented using a simultaneous scan of the input
array and the sorted items. Finally, the merging is implemented using the lazy
funnels [4]. Note, that we compute the value minS(v) only once – the first time
a merger at node v is invoked. Both cache-oblivious sorting and lazy funnels
require the tall cache assumption M = Ω(B1+ǫ). The I/O complexity follows
from [4]. ⊓⊔

Note, we can extend the above merging algorithm to solve the problem in the
external memory model using merging, rather than distribution, which might

10



be of independent interest. This is accomplished by performing Θ(M/B)-way
merging at each node and maintaining at each node Θ(M/B) minima of all its
children.

5 Additional Improvements

The techniques described in the previous sections are quite simple and can be
applied to other contexts. We briefly discuss some of these in this section.

Towards an adaptive analysis: In special cases when large portions of the input
array do not overlap with the query ranges, one can achieve better I/O com-
plexity than of the algorithms presented here. Let n′ ≤ n denote the number of
blocks of the input which overlap with the union of ranges defined by the queries.
Then both our upper bounds and lower bounds can easily be extended to show
that the support of batched RMQ queries is within Θ(n′ + q logm min{q, n′})
accesses and linear space, in both the external memory model and the cache
oblivious model.

Dynamic batched RMQ problem: In the dynamic RMQ problem we are given a
sequence that contains Q queries and N update operations (insertions and dele-
tions). There are many different ways to model the behavior of the insertions and
deletions with respect to the array indices. As discussed by Arge et al. [2], one
can consider an array version in which the updates shift the indices (an insertion
at position i increases all the succeeding indices by one; a deletion reduces them
by one), or a geometric version in which such shifting does not occur and the
indices are in fact x-coordinates, or a linked list version where indices are in fact
pointers. All these formulations are equivalent up to an additive O(sort(N +Q))
term. Previously, Arge et al. had shown how to solve such dynamic problems in
O(sort(N +Q) logm(n+ q)) I/Os. Using our static O(n+ q logm min{q, n}) solu-
tion as the base case in their solution, we can easily improve the I/O complexity
of the dynamic batched RMQ solution to O(sort(N) + sort(Q) logm n) I/Os.

6 Conclusions

In this paper, we investigate batched range minimum query (RMQ) problem in
the external memory (EM) and the cache-oblivious (CO) models. Improving on
the previous papers, we obtain matching upper and lower bounds for the static
version of the problem in the EM model. Interestingly, our lower bound shows
that the problem cannot be solved in linear I/O complexity (in the number of
queries) even if we allow the algorithm to reorder the queries in any arbitrary
order for free before it is presented with the input array. We also present the
first cache-oblivious solution to the problem and although we do not know if it
is optimal, it is faster than the previous external memory solutions.

11



Open problems. Although our work closes the case of the static version of the
problem in the EM model, there are still several interesting open problems re-
maining. There is no better lower bound known for the dynamic version of the
problem than the lower bound that we presented here for the static version. And
although we improved the upper bound of the dynamic version of the problem,
there is still a gap of O(logm n) I/Os remaining between the upper and lower
bounds. Closing this gap remains an open problem.

In the cache-oblivious model, the merge-based solution presented here seems
to require sorting all the queries. Our EM model solutions on the other hand
show that when Q ≫ N we can avoid the complexity of sorting the queries. It
would be interesting to see if similar bound can be shown in the cache-oblivious
model or the sorting of the queries is inherently required in the cache-oblivious
model.

Acknowledgements. The authors would like to thank Jérémy Barbay for many
useful discussions that inspired and motivated us in this work.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31, 1116–1127 (1988)

2. Arge, L., Fischer, J., Sanders, P., Sitchinava, N.: On (dynamic) range minimum
queries in external memory. In: Proc. 13th Algorithms and Data Structures Sym-
posium (WADS). pp. 37–48 (2013)

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proc. 4th Latin
American Theoretical Informatics Symposium. pp. 88–94 (2000)

4. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweeping. In: Proc. 29th
International Colloquium on Automata, Languages, and Programming. pp. 426–
438 (2002)

5. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: Proc. 6th ACM/SIAM Symposium
on Discrete Algorithms. pp. 139–149 (1995)

6. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range mini-
mum queries. Algorithmica 68(3), 610–625 (2014)

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

8. Fischer, J.: Optimal succinctness for range minimum queries. In: Proc. 9th Latin
American Theoretical Informatics Symposium. pp. 158–169 (2010)

9. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proc. 40th IEEE Symposium on Foundations of Computer Science. pp.
285–297 (1999)

10. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proc. 16th ACM Symposium on Theory of Computation. pp.
135–143 (1984)

11. Hasan, M., Moosa, T.M., Rahman, M.S.: Cache oblivious algorithms for the RMQ
and the RMSQ problems. Mathematics in Computer Science 3(4), 433–442 (2010)

12. Vuillemin, J.: A unifying look at data structures. Comm. ACM 23(4), 229–239
(1980)

12


