
On the Complexity of List Ranking in the
Parallel External Memory Model

Riko Jacob1, Tobias Lieber1, and Nodari Sitchinava2

1 Institute for Theoretical Computer Science, ETH Zürich, Switzerland
{rjacob,lieberto}@inf.ethz.ch

2 Department of Information and Computer Sciences, University of Hawaii, USA
nodari@hawaii.edu

Abstract. We study the problem of list ranking in the parallel external
memory (PEM) model. We observe an interesting dual nature for the
hardness of the problem due to limited information exchange among the
processors about the structure of the list, on the one hand, and its close
relationship to the problem of permuting data, which is known to be
hard for the external memory models, on the other hand.
By carefully defining the power of the computational model, we prove a
permuting lower bound in the PEM model. Furthermore, we present a
stronger Ω(log2N) lower bound for a special variant of the problem and
for a specific range of the model parameters, which takes us a step closer
toward proving a non-trivial lower bound for the list ranking problem
in the bulk-synchronous parallel (BSP) and MapReduce models. Finally,
we also present an algorithm that is tight for a larger range of parameters
of the model than in prior work.

1 Introduction

Analysis of massive graphs representing social networks using distributed pro-
gramming models, such as MapReduce and Hadoop, has renewed interests in dis-
tributed graph algorithms. In the classical RAM model, depth-first search traver-
sal of the graph is the building block for many graph analysis solutions. However,
no efficient depth-first search traversal is known in the parallel/distributed set-
ting. Instead, list ranking serves as such a building block for parallel solutions
to many problems on graphs.

The list ranking problem is defined as follows: given a linked list compute
for each node the length of the path to the end of the list. In the classic RAM
model, the list can be ranked in linear time by traversing the list. However, in the
PRAM model (the parallel analog of the RAM model) it took almost a decade
from the first solution by Wyllie [1] till it was solved optimally [2].

The problem is even more intriguing in the models that study block-wise
access to memory. For example, in the external memory (EM) model of Aggarwal
and Vitter [3] list ranking is closely related to the problem of permuting data
in an array. The EM model studies the input/output (I/O) complexity – the
number of transfers an algorithm has to perform between a disk that contains



Slow external memory

B

Internal Memory

M

CPU

(a) The EM Model

Shared memory

B B B

Cache

M

PE 1

Cache

M

PE 2

Cache

M

PE P

...

(b) The PEM Model

Fig. 1: The sequential and parallel external memory models.

the input and a fast internal memory of size M . Each transfer is performed in
blocks of B contiguous elements. In this model, permuting and, consequently,
list ranking require I/O complexity which is closely related to sorting [4], rather
than the linear complexity required in the RAM model.

In the distributed models, such as bulk-synchronous parallel (BSP) [5] or
MapReduce [6] models, the hardness of the list ranking problem is more poorly
understood. These models consist of P processors, each with a private mem-
ory of size M . With no other data storage, typically M = Θ(N/P ). The data
is exchanged among the processors during the communication rounds and the
number of such rounds defines the complexity metric of these models.

One established modeling of today’s commercial data centers running MapRe-
duce is to assume P = Θ(N ε) and M = Θ(N1−ε) for a constant 0 < ε < 1. Since
network bandwidth is usually the limiting factor of these models, O(logM P ) =
O(1) communication rounds is the ultimate goal of computation on such mod-
els [7]. Indeed, if each processor is allowed to send up to M = N/P items to
any subset of processors, permuting of the input can be implemented in a single
round, while sorting takes O(logM P ) = O(1) rounds [8,9]. On the other hand,
the best known solution for list ranking is via the simulation results of Karloff et
al. [7] by simulating the O(logN) time PRAM algorithm [2], yielding O(logP )
rounds, which is strictly worse than both sorting and permuting. Up to now, no
non-trivial lower bounds (i.e. stronger than Ω (logM P ) = Ω (1)) are known in
the BSP and MapReduce models.

In this paper we study lower bounds for the list ranking problem in the par-
allel external memory (PEM) model. The PEM model was introduced by Arge
et al. [10] as a parallel extension of the EM model to capture the hierarchi-
cal memory organization of modern multicore processors. The model consists
of P processing units, each containing a private cache of size M , and a shared
(external) memory of conceptually unlimited size (see Figure 1b). The data is
concurrently transferred between the processors’ caches and shared memory in
blocks of size B. The model measures the parallel I/O complexity – the number
of parallel block transfers. From the discussion above, it appears that the hard-
ness of list ranking stems from two factors: (1) limited speed of discovery of the

2



structure of the linked list due to limited information flow among the processors,
and (2) close relationship of list ranking to the problem of permuting data. While
only one of these challenges is captured by the distributed models or the sequen-
tial EM model, both of them are exhibited in the PEM model: the first one is
captured by the distributed nature of the private caches of the model, and the
second one has been shown by Greiner [11] who proves that permuting data in
the PEM model takes asymptotically permP (N,M,B) = min

{
N
P ,

N
PB logd

N
B

}
parallel I/Os, where d = max

{
2,min

{
M
B ,

N
PB

}}
and log(x) = max{1, log(x)}.

Part of the challenge of proving lower bounds (in any model) is restricting
the model enough to be able to prove non-trivial bounds, while identifying the
features of the model that emphasize the hardness of a particular problem.

An example of such restriction in the external memory models (both sequen-
tial and parallel) is the so-called indivisibility assumption [3]. The assumption
states that each item is processed as a whole, and no information can be ob-
tained from a part of the input, for example, by combining several items into
one. To our knowledge, without the indivisibility assumption, it is not clear how
to prove lower bounds in the PEM model exceeding the information-theoretic
lower bounds of Ω (logP ) parallel I/Os [12,10].

1.1 Our Contributions

In this paper, we address the precise formulation of the power of the PEM model
for the list ranking problem. In Section 2 we present the atomic PEM model
which formalizes the indivisibility assumption in the PEM model. It can be
viewed as the parallel analog of the model for proving permuting lower bounds
in the sequential EM model [3]. We extend this basic model by allowing an
algorithm to perform operations on the atoms that create new atoms. While
we always keep the indivisibility of the atoms, the precise operations and the
information the algorithm has about the content of the atom varies.

In the sequential EM model, Chiang et al. [4] sketch a lower bound for list
ranking via a reduction to the proximate neighbors problem. However, since there
is no equivalent to Brent’s scheduling principle [13] in the PEM model [11], the
lower bound does not generalize to the PEM model.

Therefore, in Section 3 we derive a lower bound of Ω(permP (N,M,B)) par-
allel I/Os for the proximate neighbor problem, and two problems which are
related to the list ranking problem. Our lower bounds hold for both determinis-
tic and randomized algorithms. In the process we provide an alternative proof for
the proximate neighbor lower bound in the sequential external memory model,
matching the result of Chiang et al. [4]. Those lower bounds essentially exploit
the fact that the same problem can be represented as input in many different
layouts.

The discussion in Section 1 about the dual nature of hardness of the list
ranking problem might hint at the fact that the result above is only part of the
picture and a stronger lower bound might be achievable. Part of the challenge in
proving a stronger lower bound lies in the difficulty of combining the indivisibility
assumption with the restrictions on how the structure of the linked list is shared

3



among the processors without giving the model too much power, thus, making
the solutions trivial. We address this challenge by defining the interval PEM
model and defining the guided interval fusion (GIF) problem (Section 4). We
prove that GIF requires Ω(log2N) parallel I/Os in the interval PEM. Our lower
bound for GIF in the PEM model implies a Ω(logN) lower bound for the number
of rounds for GIF in the distributed models when P = Θ(M) = Θ(

√
N).

GIF captures the way how all currently known algorithms use information
to solve list ranking in all parallel/distributed models. Therefore, if this lower
bound could be broken for the list ranking problem, it will require completely
new algorithmic techniques. Thus, our result brings us a step closer to proving
the unconditional Ω(logP ) lower bound in the BSP and MapReduce models.

Finally, in Section 5 we improve the PEM list ranking algorithm of Arge et
al. [14] to work efficiently for a larger range of parameters in the PEM model.

2 Modeling

We extend the description of the PEM model given in Section 1 to define the
PEM model more precisely. Initially, the data resides in the shared memory. To
process any element, it must be present in the corresponding processor’s cache.
The shared memory is partitioned into blocks of B contiguous elements and
the transfer of data between the shared memory and caches is performed by
transferring these blocks as units. Each transfer, an input-output operation, or
simply I/O, can transfer one block of B items between the main memory and
each processors’ cache. Thus, up to P blocks can be transferred in each parallel
I/O operation. The complexity measure of a PEM algorithm is the number of
parallel I/Os that the algorithm performs.

Similar to the PRAM model, there are several policies in the PEM model,
for handling simultaneous accesses by multiple processors to a block in shared
memory. In this paper we consider the CREW PEM model, using a block wise
concurrent read, exclusive write policy.

In order to prove lower bounds we make the definition of the model more
precise by stating what an algorithm is able to do in each step. In particular, we
assume that each element of the input is an indivisible unit of data, an atom,
which consumes one memory cell in the cache or shared memory. Such atoms
come into existence either as input atoms, or by an operation, as defined later,
on two atoms. A program or an algorithm has limited knowledge about the
content of an atom. In this paper an atom does not provide any information.
Furthermore, the atomic PEM is limited to the following operations: an I/O
operation reads or writes one block of up to B atoms in the shared memory, and
atoms can be copied or deleted. Formal definitions of similar PEM machines can
be found in [10,11].

For providing lower bounds for different problems, the concept of the
atomic PEM is extended in later sections.

In the following, we distinguish between algorithms and programs in the fol-
lowing way: In an algorithm the control flow might depend on the input, i.e.,

4



there are conditional statements (and therefore loops). In contrast, a program
has no conditional statements and is a sequence of valid instructions for a PEM
model, independent of the input (atoms). For a given instance of a computa-
tional task, a program can be seen as an instantiation of an algorithm to which
all results of conditional statements and index computations are presented be-
forehand. Note, that in the problems considered in Section 3 the copying and
the deletion operation of the atomic PEM do not help at all, since a program
can be stripped down to operations which operate on atoms which influence the
final result.

3 Counting Lower Bounds to the List Ranking Problem

In this section we prove the lower bound for the list ranking problem by showing
the lower bound to the proximate neighbors problem [4] and reducing it to the
problems of semigroup evaluation, edge contraction and, finally, list ranking.

3.1 Proximate Neighbors Problem in PEM

Definition 1 ([4]). A block permutation describes the content of the shared
memory of a PEM configuration as a set of at most B atoms for each block.

Definition 2. An instance of the proximate neighbors problem of size N con-
sists of atoms xi for i ∈ [N ]. All atoms are labeled by a labeling function
λ: [N ] 7→ [N2 ] with |λ−1(i)| = 2. An output block permutation solves the prob-

lem if for every i ∈ [N2 ] the two neighboring atoms λ−1(i) are stored in the same
block. The blocks in such an output may contain less than B atoms.

Lemma 3. Let A be a computational problem of size N for which an algorithm

has to be capable of generating at least
(
N
eB

)cN
block permutations, for a con-

stant c > 0. Then in the CREW atomic PEM model with P ≤ N
B processors, at

least half of the input instances of A require Ω (permP (N,M,B)) parallel I/Os.

Proof. Straightforward generalization of the proof to Theorem 2.7 in [11]. ut

Theorem 4. At least half of the instances of the proximate neighbors problem
of size N require Ω (permP (N,M,B)) parallel I/Os in the CREW atomic PEM
model with P < N/B processors.

Proof. Any algorithm solving an instance of the proximate neighbors problem

must be capable of generating at least (N/2)!

(B/2)
N
2

block permutations (see the

full version of this paper [15] for a complete proof). The theorem follows from

Lemma 3 and the observation that (N/2)!

(B/2)
N
2
≥
(
N
eB

)N
2 . ut

Note, that the bound holds even if a program has full access to the labeling
function λ and thus is fully optimized for an input. The origin of the complexity
of the problem rather is permuting the atoms to the output block permutation
that solves the problem.

5



3.2 Semigroup Evaluation in the PEM Model

Consider the problem of evaluating a very simple type of expressions, namely
that of a semigroup, in the PEM model.

Definition 5 (Semigroup Evaluation). Let S be a semigroup with its asso-
ciative binary operation · : S × S → S. The semigroup evaluation problem is
defined as evaluating the expression

∏N
i=1 ai, with ai = xπ(i), for the array of

input atoms xi ∈ S for 1 ≤ i ≤ N and where π is a permutation over [N ].

To be able to solve the semigroup evaluation problem, algorithms must be
able to apply the semigroup operation to atoms. Thus, we extend the atomic PEM
model to the semigroup PEM model by the following additional operation: if
two atoms x and y are in the cache of a processor, a new atom z = x·y can be
created.

We say that a program is correct in the semigroup PEM if it computes the
correct result for any input and any semigroup.

Theorem 6. At least one instance of the semigroup evaluation problem of size N
requires Ω (permP (N,M,B)) parallel I/Os in the CREW semigroup PEM model
with P ≤ N

B processors.

Proof (Sketch). Let IPλ be an instance of the proximate neighbors problem over
the input atoms X = {xi|i ∈ [N ]} with its labeling function λ. We consider
an instance ISπ of the semigroup evaluation problem over the semigroup on the
set X2 with the semigroup operation (a, b)·(c, d) = (a, d), where a, b, c, d ∈ X.
Furthermore, the instance ISπ is defined over the input atoms ai = (xi, xi), with
1 ≤ i ≤ N . The permutation π of ISπ is one of the permutations such that for all
i ∈
[
N
2

]
, {π(2i− 1), π(2i)} = λ−1(i) holds.

Then, the key idea is to write for each application of the semigroup operation
(a, b)·(c, d) in a program solving ISπ , the pair {b, c} as a result for IPλ to the
output. This would yield an efficient program for IPλ , and therefore yields the
lower bound by Theorem 4. The full argument can be found in [15]. ut

3.3 Atomic Edge Contraction in the PEM Model

Definition 7. The input of the atomic edge contraction problem of size N con-
sists of atoms xi, 1 ≤ i ≤ N , which represent directed edges ei on a (N+1)-vertex
path between vertices s and t. Initially, the edges are located in arbitrary loca-
tions of the shared memory. The instance is solved if an atom representing the
edge (s, t) is created and written to shared memory.

To prove the lower bound for the atomic edge contraction problem, we extend
the atomic PEM with an additional operation: two atoms representing a pair of
edges (a, b) and (b, c) can be removed and replaced by a new atom representing
a new edge (a, c). We call the resulting model edge-contracting PEM.

6



Theorem 8. There is at least one instance of the atomic edge contraction prob-
lem of size N which requires Ω (permP (N,M,B)) parallel I/Os in the CREW
edge-contracting PEM model with P ≤ N

B processors.

Proof (Sketch). An instance ISπ of the semigroup evaluation problem can be
reduced to an instance IE of the atomic edge contraction problem, by defining
the atom xπ(i) of IE , initially stored at location π(i), as eπ(i) = (π(i), π(i+ 1)),
where π is the permutation of ISπ . The full argument can be found in [15]. ut

3.4 Randomization and Relation to the List Ranking Problem

Observe that the expected number of parallel I/Os of a randomized algorithm for
an instance is a convex combination of the number of parallel I/Os of programs.
Combining this observation with the Ω (logP ) lower bound of [12,10] mentioned
in Section 1 we obtain:

Theorem 9. For the proximate neighbors, semigroup evaluation, and the atomic
edge contraction problems, there exists at least one instance that requires at least
Ω (permP (N,M,B) + logP ) expected parallel I/Os by any randomized algorithm
in the corresponding PEM model with P ≤ N

B processors.

Although our semigroup PEM and edge-contracting PEM models might seem
too restrictive at a first glance. To the best of our knowledge all current parallel
solutions to list ranking utilize pointer hopping, which can be reduced to atomic
edge contraction and thus the lower bound applies.

4 The Guided Interval Fusion Problem (GIF)

In this section we prove for the GIF problem, which is very similar to the atomic
edge contraction problem, a lower bound of Ω

(
log2N

)
in the PEM model with

parameters P = M and B = M/2 for inputs of size N = PM = 2x for
some x ∈ N. In contrast to the atomic edge contraction problem, in the GIF
problem an algorithm is not granted unlimited access to the permutation π.

The chosen parameters of the PEM model complement the upper bounds of
Section 5 at one specific point in the parameter range. Note that with careful
modifications the Ω

(
log2N

)
bound can even be proven for N = M

3
2+ε.

Definition 10. The interval PEM is an extension of the atomic PEM: Two
atoms x and y representing closed intervals Ix and Iy, located in one cache, can
be fused if Ix ∩ Iy 6= ∅. Fusing creates a new atom z representing the interval
Iz = Ix ∪ Iy. We say z is derived from x if z is the result of zero or more fusing
operations starting from atom x.

Definition 11. The guided interval fusion problem (GIF) is a game between an
algorithm and an adversary, played on an interval PEM. The algorithm obtains a
GIF instance G in the first N cells of the shared memory, containing N uniquely

7



named atoms xi, 1 ≤ i ≤ N . Each initial atom xi represents the (invisible to the
algorithm) closed interval Ixi

= [k − 1, k] for k = π(i) with 1 ≤ k ≤ N .
The permutation π is gradually revealed by the adversary in form of bound-

aries p = (i, j) meaning that the (initial) atoms xi and xj represent neighboring
intervals (π(j) = π(i) + 1). We say that the boundary point p for xi and xj is
revealed. The adversary must guarantee that at any time, for all existing atoms,
at least one boundary is revealed. The game ends as soon as an atom represent-
ing [0, N ] exists.

Note the following: The algorithm may try to fuse two atoms, even though
by the revealed boundaries this is not guaranteed to succeed. If this attempt
is successful because their intervals share a point, a new atom is created and
the algorithm solved a boundary. We call this phenomenon a chance encounter.
Since the interval PEM extends the atomic PEM, copying of atoms is allowed.

For the lower bound, we assume that the algorithm is omniscient. More
precisely, we assume there exists a central processing unit, with unlimited com-
putational power, that has all presently available information on the location of
atoms and what is known about boundaries. This unit can then decide on how
atoms are moved and fused.

Thus, as soon as all boundary information is known to the algorithm, the in-
stance is solvable with O (logN) parallel I/Os: The central unit can virtually list
rank the atoms, group the atoms by rank into P groups, and then by permuting
move to every processor O (M) atoms which then can be fused with O (1) I/Os
to the solving atom.

Hence, the careful revealing of the boundary information is crucial. To de-
fine the revealing process for GIF instances, the atoms and boundaries of a GIF
instance G of size N are related to a perfect binary tree T G . The tree T G has N
leaves, N−1 internal nodes and every leaf is at distance h = logN from the root.
More precisely, each leaf i ∈ [N ] corresponds to the atom representing the inter-
val [i− 1, i]. And each internal vertex vp corresponds to the boundary p = (i, j)
where i corresponds to the rightmost leaf of its left subtree, and j to the leftmost
leaf of the right subtree. The levels of T G are numbered bottom up: the leaves
have level 1 and the root vertex level logN (corresponding to the revealing order
of boundaries).

The protocol for boundary announcement, shows for a random GIF in-
stance G, that a deterministic algorithm takes Ω

(
log2N

)
parallel I/Os.

Definition 12. The tree T G is the guide of G if boundaries are revealed in the
following way. Let x be an atom of G representing the interval I = [a, b]. If
neither of the boundaries a and b are revealed, the boundary whose node in T G
has smaller level, is revealed. If both have the same level, a is revealed.

Note that for the analysis it is irrelevant how to break ties (in situations when
the two invisible boundaries have the same level). By the assumption that the
algorithm is omniscient, when p is revealed, immediately all intervals having p as
boundary know that they share this boundary. Thus, the guide ensures that at
any time each atom knows at least one initial atom with which it can be fused.

8



A node v ∈ T G is called solved, if there is an atom of G representing an interval
that contains the intervals of the leaves of the subtree of v. The boundary p is
only revealed by the guide if at least one child of vp is solved.

An easy (omniscient) algorithm solving a GIF instance can be implemented:
in each of O(logN) rounds, permute the atoms such that for every atom there
is at least one atom, known to be fuseable, which resides in the same cache.
Fuse all pairs of neighboring atoms, reducing the number of atoms by a factor
of at least 2, revealing new boundaries. Repeat permuting and fusing until the
instance is solved. Because the permuting step can be achieved with O (logN)
parallel I/Os, this algorithm finishes in O

(
log2N

)
parallel I/Os. Note that solv-

ing a boundary resembles bridging out one element of an independent set in the
classical list ranking scheme. Thus, most list ranking algorithms use information
as presented to an algorithm solving a GIF instance G guided by T G . Hence, this
natural way of solving a GIF instance can be understood as solving in every of
the logN rounds a proximate neighbors instance, making the Ω

(
log2N

)
lower

bound reasonable.

In the following we prove the lower bound for GIF by choosing k and showing
that s = k − 1 = O (logN) = O (logM) progress stages are necessary to solve
all nodes W of level k of T G (thus, |W | = 2h+1−k). For each stage we show in
Lemma 15 that it takes Ω (logN) parallel I/Os to compute.

To measure the progress of a stage, configurations of interval PEM machines
are used. The configuration Ct after the interval PEM machine performed t I/Os
followed by fusing operations consists of sets of atoms. For each cache and each
block of the shared memory, there is one set of atoms.

For e ∈W , let Te be the subtree of e in T G , and Be be all boundaries in Te.
The progress measure towards solving e is the highest level of a solved boundary
in Be. More precisely, Te is unsolved on level i, if all boundaries of level i of Be
are unsolved. Initially every Te is unsolved on level 2. The solved level increases
by one at a time if only revealed boundaries are solved, but chance encounters
may increase it faster.

The execution of a deterministic algorithm A defines the following s progress

stages: Let s = 2 logM
16 and X = |W |

s . In each stage 1 < i ≤ s, at least X elements
increase their level to i. Over time, the number of elements that are unsolved on
level i decreases, and we define ti to be the last time where in Cti the number
of elements of W that are unsolved on level i+ 1 is at least |W | − iX. Further,
let Wi be the elements (at least X of them) that in stage i get solved on level i
or higher (in the time-frame from ti−1 to ti+1). We choose k−1 = h

16 such that

X = 2h+1−k

s ≥ 2
15h
16 /s = M

15
8 /s > M

7
4 because s = 2 logM

16 < M
1
8 for M ∈ N.

In the beginning of stage i, for each v ∈ Wi the level of v is at most i − 1,
and hence all level i nodes are not announced to the algorithm. Let Pi be the
set of boundaries for which progress is traced: For every e ∈ Wi, there is a
node vpe of level i with boundary pe that is solved first (brake ties arbitrarily).
Then Pi consists of those boundaries. We define ae and be to be the two level 1
atoms (original intervals) defining the boundary pe. Then all intervals having
boundary pe are derived of ae or be. Solving the boundary pe means fusing

9



any interval derived of ae with any interval derived of be. Furthermore a traced
boundary is considered solved if in its interval (the one corresponding to an
element of W ) a chance encounter solves a boundary of level greater than i.

To trace the progress of the algorithm towards fusing the atoms of one stage,
we define the graph Git = (V,Eit) from the configuration Cti+t. There is one
vertex for each cache and each block of the shared memory (independent of t).
There is an edge (self-loops allowed) {u, v} ∈ Eit if for some e ∈ Wi some atom
derived of ae is at u and some atom derived of be is at v or vice versa. The
multiplicity of an edge counts the number of such e. The multiplicity of the
graph is the maximal multiplicity of an edge.

Note that solving a node ve requires that it counts as a self-loop somewhere.
Hence the sum of the multiplicities of self-loops are an upper bound on the
number of solved nodes, and for the stage to end, i.e., at time ti+1 + 1, the sum
of the multiplicities of loops must be at least X. After each parallel I/O chance
encounters may happen. Thus, the number of chance encounters is given by P
times the multiplicity of self-loops at the beginning of the stage.

We say that two nodes of T G are indistinguishable if they are on the same
level and exchanging them could still be consistent with the information given
so far. Let le (derived of ae) and re (derived of be) be the two children of ve ∈ Pi.
By definition, at time ti both le and re are unsolved and hence ve is not revealed.

Boundaries corresponding to nodes of level higher than k may be announced
or solved (not only due to chance encounters). To account for that, we assume
that all such boundaries between the intervals corresponding to W are solved.
Hence the algorithm is aware of the leftmost and rightmost solved interval be-
longing to these boundaries, and this may extend to other intervals by revealed
boundaries. Only the nodes of level i that correspond to this leftmost or right-
most interval might be identifiable to the algorithm, all other nodes of level i
are indistinguishable. Because i < k, for all traced pairs ae, be at least one of
the elements belongs to this big set of indistinguishable nodes. We mark identi-
fiable nodes. Hence, at stage i the algorithm has to solve a random matching of
the traced pairs where all marked nodes are matched with unmarked ones (and
unmarked ones might be matched with marked or unmarked ones).

The next lemma derives a high-probability upper bound on the multiplicity
of a graph. All remaining proofs of this section are deferred to [15]. The proof
of the following lemma uses the Hoeffding inequality.

Lemma 13. Consider a deterministic GIF algorithm operating on a uniformly
chosen permutation π defining T G for the GIF instance G. Let p(i,M) be the

probability that Gi0 has multiplicity at most M
5
8 (where P,N, tj, and k depend on

parameter M). Then there is a M ′ such that for all M ≥M ′ and for each i ≤ k
it holds p(i,M) ≥ 1− 1

M2 .

Fundamental insights on identifying two pairs of a K4 show that the progress
achieved with one I/O can not be too large.

Lemma 14. If the graph Git has multiplicity at most m, then Git+1 has multi-
plicity at most 4m.

10



By the two previous lemmas we obtain the following result.

Lemma 15. Let A be an algorithm solving an GIF instance G guided by T G of
height h traced at level k − 1 = h/16. Each progress stage j < s = k − 1 of A,
assuming tj < log2M , takes time tj − tj−1=Ω (logM).

There are O (logN) stages, each taking at least Ω (logN) I/Os, yielding with
a union bound over all Gi0 for all progress stages i < s:

Lemma 16. Consider a deterministic GIF algorithm operating on a uniformly
chosen permutation π defining T G for the GIF instance G. Then there is a M ′

such that for all M ≥M ′, solving G in the interval PEM takes with high proba-
bility (p > 1− 1/M) at least Ω

(
log2N

)
parallel I/Os.

By Yao’s principle [16] this can be transferred to randomized algorithms:

Theorem 17. The expected number of parallel I/Os to solve a GIF instance of
size N = PM on an interval PEM with M = P is Ω

(
log2N

)
.

A simple reduction yields:

Theorem 18. Solving the GIF problem in the BSP or in the MapReduce model
with N = PM and P = Θ(M) = Θ(

√
N) takes Ω (logN) communication

rounds.

GIF is an attempt to formulate how the known algorithms for list ranking
distribute information by attaching it to atoms of the PEM model. Most known
algorithms for list ranking use fusing of edges on an independent set of edge-
pairs (bridging out edges). This means that every edge is used (if at all) either as
first or second edge in the fusing. This choice of the algorithm is taken without
complete information, and hence we take it as reasonable to replace it by an
adversarial choice, leading to the definition of the guide of a GIF instance.

Additionally, the PEM lower bound shows that there is no efficient possibility
to perform different stages (matchings) in parallel, showing that (unlike in the
efficient PRAM sorting algorithms) no pipelining seems possible. At this stage,
our lower bound is hence more a bound on a class of algorithms, and it remains
a challenge to formulate precisely what this class is. Additionally, it would be
nice to show lower bounds in a less restrictive setting.

5 Upper Bounds

Improvements in the analysis [11] of the PEM merge sort algorithm [10] yield:

Lemma 19 ([11]). The I/O complexity of sorting N records with the PEM
merge sort algorithm using P ≤ N

B processors is sortP (N,M,B) = O
(
N
PB logd

N
B

)
for d = max{2,min{ NPB ,

M
B }}.

We use it to extend the parameter range for the randomized list ranking
algorithm [14] from P ≤ N

B2 , and M = BO(1) to:

11



Theorem 20. The expected number of parallel I/Os, needed to solve the list
ranking problem of size N in the CREW PEM model with P ≤ N

B is

O
(

sortP (N,M,B) + (logP ) log
B

logP

)
which is for B < logP just sortP (N,M,B).

In order to make the standard recursive scheme work, two algorithms are
used. By Lemma 19, the randomized algorithm of [14], which is based on [13],
can be used whenever N ≥ P min{logP,B}. This yields the (logP ) log B

logP

term, if B > logP . Otherwise (N ≤ P min{logP,B}) a simulation of a work-
optimal PRAM algorithm [2] is used. A careful implementation and analysis [15]
yield Theorem 20.

References

1. Wyllie, J.: The Complexity of Parallel Computation. PhD thesis, Cornell Univer-
sity (1979)

2. Anderson, R.J., Miller, G.L.: Deterministic parallel list ranking. In: VLSI Algo-
rithms and Architectures. Volume 319 of LNCS. Springer (1988) 81–90

3. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9) (September 1988) 1116–1127

4. Chiang, Y.J., Goodrich, M., Grove, E., Tamassia, R., Vengroff, D.E., Vitter, J.S.:
External-memory graph algorithms. In: Proceedings of SODA’95. (1995) 139–149

5. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8)
(1990) 103–111

6. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1) (January 2008) 107–113

7. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In
Charikar, M., ed.: SODA, SIAM (2010) 938–948

8. Goodrich, M.: Communication-efficient parallel sorting. SIAM J. Comput. 29(2)
(1999) 416–432

9. Goodrich, M., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in
the mapreduce framework. In: ISAAC. Volume 7074 of LNCS., Springer (2011)
374–383

10. Arge, L., Goodrich, M., Nelson, M., Sitchinava, N.: Fundamental parallel algo-
rithms for private-cache chip multiprocessors. In: SPAA 2008. (2008) 197–206

11. Greiner, G.: Sparse Matrix Computations and their I/O Complexity. Dissertation,
Technische Universität München, München (2012)

12. Karp, R.M., Ramachandran, V.: Handbook of theoretical computer science. (1990)
869–941

13. Vishkin, U.: Randomized speed-ups in parallel computation. In: STOC. (1984)
230–239

14. Arge, L., Goodrich, M., Sitchinava, N.: Parallel external memory graph algorithms.
In: IPDPS, IEEE (2010) 1–11

15. Jacob, R., Lieber, T., Sitchinava, N.: On the complexity of list ranking in the
parallel external memory model. CoRR abs/1406.3279 (2014)

16. Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In: FOCS, IEEE Computer Society (1977) 222–227

12


	On the Complexity of List Ranking in the Parallel External Memory Model

