Computational Geometry in the Parallel External Memory Model

Nodari Sitchinava
Institute for Theoretical Informatics
Karlsruhe Institute of Technology
nodari@ira.uka.de

1 Introduction

Continued advances in VLSI scaling combined with unsustainable power consumption of frequency
scaling resulted in parallel processors having become mainstream as demonstrated by modern mul-
ticores. Current off-the-shelf processors already contain up to 16 cores [4] and the prototypes boast
up to 48 cores [14] on a single chip.

The wide availability of multicores renewed interest in parallel algorithm research for these
architectures. While multicores resemble the well-studied PRAM model in the way that the inter-
processor communication is performed via writing to and reading from the shared memory, unlike
the PRAM model, multicores also contain low-latency caches and load data from shared memory
in blocks — cache lines — larger than a single word. Thus, researchers started looking into new ways
to address parallelism and memory hierarchies of these processors.

In the sequential setting, the I/O model of Aggarwal and Vitter [1] serves as a simple model
to consider spatial locality in algorithm design, which results in algorithms which are also cache-
efficient [11]. However, the I/O model is sequential and does not address processor-level parallelism.
The only parallel variant of the I/O model considers access to multiple disks in parallel while still
processing data using a single processor.

Recently, the parallel external memory (PEM) model has been introduced to study the presence
of private caches in the multiprocesor environment and a number of problems have been studied
in this model [2,3,6,7,15]. There is a number of fundamental geometric problem that arise in the
Geographic Information Systems. In this article we present an overview of the geometric problems
that can be solved in parallel and I/O-efficiently in the PEM model.

2 The Model — —
The PEM model is a simple multiprocessor ex- ["] [”] . !

tension of the I/O model of Aggarwal and Vit-
ter [1]. It conmsists of P processing elements
(PEs), each containing a private cache of size
M. All processors share main memory of con-
ceptually unlimited size. Each processor enjoys

exclusive access to its own cache. Just as in
the sequential I/O model, the data has to be Figure 1: The PEM model.

Shared memory

present in the processor’s cache before the processor can perform any operation on it. The transfer
between the shared memory and caches is performed via parallel I/0 operations. In one such op-
eration each processor can transfer one block of size B between its cache and the shared memory.
The complexity metric of an algorithm — the parallel I/0O complexity — is the maximum number of
I/O operations that any one of the processors performs throughout the computation. Just as in the
PRAM model, we can distinguish variants of the model depending on how they handle concurrent
accesses to the same block of data in shared memory by multiple processors. The version of the
model that we consider in this article allows concurrent reading from the same block, but disallows
concurrent writing to the same block even if it is to different addresses within the block. Thus, it
is up to the algorithm designer to ensure that no concurrent writes happen to the same block.

While there are a number of other theoretical models that model modern multicores, including
their more advanced multi-level memory hierarchies (e.g. see [9,10,12]), the PEM model offers
the simplest way to study parallelism and cache-efficiency required for efficient computations on
modern multicores.

2.1 Fundamental Results

The original paper on the PEM model by Arge et al. [6] studied the fundamental problems of
parallel prefix sums and sorting, which they showed can be performed optimally in ©(N/PB+log P)

and © (% logr)B %) = sortp(V) parallel I/O complexity, respectively. Note, if the number of

processors is at most %, the I/O complexity of the prefix sums solution reduces to ©(N/PB) =
scanp(N), the I/O complexity of scanning N elements using P processors.

3 Parallel Distribution Sweeping

Distribution sweeping [13] is an algorithmic technique that has been used to solve a number of
geometric problems I/O-efficiently. The technique recursively partitions the plane into ©(M/B)
slabs, each containing roughly an equal number of objects. At each recursive level, a vertical sweep
of objects is performed during which a subset of output is reported and the objects are distributed
into the appropriate slabs in preparation for the next recursive level. The recursion stops when the
objects of each slab fit in internal memory, i.e. after ©(log, g(IN/M)) recursive calls.

Ajwani et al. [2] extend the distribution sweeping framework to the PEM model. First, they set
the number of vertical slabs at each recursive level to & = min{,/N/P, M/B}! and the recursion
proceeds until there are P slabs at which point each slab can be processed I/O-efficiently using a
single processor. Next, they address the two main challenges that arise with parallelizing distribu-
tion sweeping: (1) performing the sweep in parallel and (2) load balancing the output reporting
for output-sensitive algorithms to ensure that no processor spends more than O(K/PB) 1/Os for
output of size K.

There are two approaches to deal with these challenges. The first approach delays the report-
ing to the last recursive level by creating duplicates of the objects within the slabs. The second
approach reports intersections immediately at each recursive level just as in the sequential dis-
tribution sweeping. However, the second approach requires additional I/O operations to perform
load-balancing at each recursive level. We will describe the two approaches using the problem of

!The choice of k comes from the k-way PEM mergesort of Arge et al. [6] and under their assumption of M = BOW
ensures that k = O(N/PB), the I/O complexity of a parallel scan of the input.

orthogonal line segment intersection reporting as a running example: given a set of axis-aligned
line segments, report all pairs of segments that intersect. The problem has optimal sequential
I/O complexity of © ((N/B) 10gM/B(N/B) + K/B), i.e., the sequential sorting complexity of the
input and scanning complexity of the output. We will try to achieve the corresponding parallel 1/O
complexities in the PEM model.

The advantage of the first approach is the relative simplicity of load-balancing of the output
reporting, which happens only at the lowest level of the recursion. However, one must be careful
which segments to duplicate to make sure that not too many duplicate segments are created, thus,
offsetting the benefits of the parallelism. In particular, a horizontal segment is duplicated within
a vertical slab iff the segment spans the slab and intersects at least one vertical segment within
that slab. The problem of detecting whether a horizontal segment spanning a slab intersects a
vertical segment within that slab reduces to the problem of colored prefiz sums with k colors: given
an array of numbers and a color associated with each number, compute for each color the prefix
sums among the numbers of that color. This problem has been solved by Arge et al. [6] as long as
there are at most M different colors. Since a horizontal segment is duplicated within a slab only if
it intersects a vertical segment within that slab, at most K additional horizontal segments might
be created. Thus, this approach results in O(sortp(N + K)) parallel I/O complexity for the line
segment intersection reporting problem. Note that for large K this is a logarithmic factor off from
optimality.

In the second approach, the intersections between horizontal segments spanning a slab and
vertical segments within that slab are reported immediately at each recursive level. This avoids
creating extra copies of segments. However, to load balance the output reporting among multiple
processors, one needs to compute the number of intersections to be reported for each vertical
segment at each recursive level. This problem reduces to the problem of one-dimensional range
counting: for a set of one-dimensional ranges and points, report how many points lie within each
range. The known I/O-efficient solution to this problem is easily parallelizable but requires sorting
the entire input. Performing a sorting step at each of the O(log; P) recursive levels adds up to
O(sortp(NV)log, P + scanp(K)) overall parallel I/O complexity for the line segment intersection
reporting problem. Note that this is a logarithmic factor off from optimality for small K.

In a later paper [3], Ajwani et al. found a new way to perform one-dimensional range counting
I/O-efficiently without sorting if the input is already pre-sorted, which can be performed once at
the beginning of the algorithm. While the solution is more complicated, it results in the optimal
O(sortp(N) + scanp(K)) parallel I/O complexity for the problem of line segment intersection
reporting in the PEM model for all values of N and K.

3.1 Additional Problems

The distribution sweeping framework is the key technique to solving a number of geometric problems
in the I/O model. Using the idea of multislabs [5], parallel distribution sweeping framework can
be used to solve the problem of 2D range reporting in the PEM model. The problem is defined
as follows: given a set of axis-aligned rectangles and a set of points on a plane, report all point-
rectangle pairs such that the point lies inside the rectangle. Finally, combining the solutions to
line segment intersection reporting and 2D range reporting, one also obtains a PEM solution to the
rectangle intersection reporting problem (given a set of axis-aligned rectangles, report all pairs of
non-disjoint rectangles).

Unfortunately, the improved 1D range counting problem used for load-balancing the reporting
step in the optimal PEM solution to the line segment intersection reporting problem does not
directly apply to the multislab setting. Thus, the best parallel I/O complexities for these two
problems remain O(sortp(N + K)) or O(sortp(NV)log, P + scanp(K)) [2]. It remains an open
problem if one can achieve the optimal I/O complexity of ©(sortp(N) + scanp(K)) for these two
problems and, in general, for problems that use the multislab technique.

Using the ideas of multi-way merging in the PEM model [6], one can also obtain solutions to the
problems of weighted dominance counting of a point set on a plane, computation of the lower envelop
of a set of non-intersecting line segments on a plane, and the computation of the three-dimensional
maxima of a point set in O(sortp(N)) parallel I/O complexity in the PEM model [2].

Finally, a careful analysis of the PRAM algorithm for computing a convexr hull of a point set
on a plane [8] reveals it to be I/O-efficient as well. Thus, a convex hull in two dimensions can also
be computed in O(sortp(NV)) parallel I/O complexity in the PEM model [2].

4 Parallel Buffer and Range Trees

Most recently, Sitchinava and Zeh [15] describe how to build a parallel version of the buffer tree
and extend it to obtain a parallel range tree data structure in the PEM model.

Buffer tree [5] is an external memory data structure which is efficient in solving offline dynamic
problems. In dynamic problems, the queries must be answered correctly in the presence of updates
to the data structure, e.g., in the form of insert and delete operations, which are interspersed with
the queries. The sequential buffer tree is able to achieve © (% log s /B %) I/O complexity per each

of N query and update operations and © (%) I/O complexity per each output point reported.
Note, that since these I/O complexities can be less than one I/O, the bounds are amortized over
all updates and queries and to be able to achieve these bounds, the problems must be offline, i.e.,
all updates and queries must be given upfront.

Sequential buffer tree is a balanced © (M /B)-way search tree with each internal node augmented
with a buffer of size M. The update operations and queries are inserted into the buffer of the root
node of the tree and are only processed when the buffer becomes full. The processing of a buffer at
a node involves distributing the contents to the buffers of the appropriate children nodes. During
this process, answers are reported for any query for which there is sufficient information within the
buffer alone; otherwise it is propagated to the appropriate child’s buffer for further processing. If
the buffer of a child becomes full in the process, it is processed recursively. The recursive buffer
processing continues until the leaf nodes. At that time all queries on the root to leaf path will have
been answered and the tree is rebalanced if it is necessary.

In the parallel buffer tree the buffers are increased to size g each and internal nodes’ fanouts are
increased to ©(g/B). The buffer size parameter g depends on the specific problem being solved. In
particular, g is defined to be the smallest size for which the problem can be solved I/O-efficiently
using all P processors in the PEM model. Then each buffer can be processed using all P processors
in parallel while answering queries and distributing the buffer’s content to the appropriate children’s
buffers without loss in parallel I/O-efficiency. For example, the parallel buffer tree can answer offline

dynamic membership queries in © (P—lB log M/B %) amortized parallel I/O complexity per each of
N query and update operations by setting g = ©(PB?).
Using similar method as in the sequential setting and by setting the buffer size to g = ©(PB?log P),

the parallel buffer tree can be used to implement a PEM range tree data structure to answer offline
dynamic range queries in parallel and 1/O-efficiently. The data structure achieves optimal amor-

tized parallel I/O complexity of © (% logar/B %) per each of N query and update operations and

C] (P—lB) I/O complexity per each output point reported.

While sequential buffer tree can also be used to construct an external segment tree, it seems

more challenging in the parallel setting and the existence of a parallel segment tree in the PEM
model remains an open problem.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116-1127, 1988.

[2] D. Ajwani, N. Sitchinava, and N. Zeh. Geometric algorithms for private-cache chip multipro-
cessors. In ESA, pages 75-86, 2010.

[3] D. Ajwani, N. Sitchinava, and N. Zeh. I/O-optimal distribution sweeping on private-cache
chip multiprocessors. In IPDPS, pages 1114-1123, 2011.

[4] AMD Corp. New AMD Opteron processors deliver the ultimate in performance, scal-
ability and efficiency. Press Release: http://www.amd.com/us/press-releases/Pages/
new-amd-opteron-processor-2011novi4.aspx, Nov. 2011.

[5] L. Arge. The buffer tree: A technique for designing batched external data structures. Algo-
rithmica, 37(1):1-24, 2003.

[6] L. Arge, M. T. Goodrich, M. J. Nelson, and N. Sitchinava. Fundamental parallel algorithms
for private-cache chip multiprocessors. In SPAA, pages 197-206, 2008.

[7] L. Arge, M. T. Goodrich, and N. Sitchinava. Parallel external memory graph algorithms. In
IPDPS, pages 1-11, Apr. 2010.

[8] M. J. Atallah and M. T. Goodrich. Parallel algorithms for some functions of two convex
polygons. Algorithmica, 3:535-548, 1988.

[9] G. Blelloch, P. Gibbons, and H. Simhadri. Low depth cache-oblivious algorithms. In SPAA,
pages 189-199, 2010.

[10] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch.
Provably good multicore cache performance for divide-and-conquer algorithms. In SODA,
pages 501-510, 2008.

[11] Y.-J. Chiang. Experiments on the practical I/O efficiency of geometric algorithms: Distribution
sweep versus plane sweep. Comput. Geom., 9(4):211-236, 1998.

[12] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algorithms for

multicores and network of processors. In IPDPS, pages 1 —12, 2010.

[13] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational
geometry. In FOCS, pages 714-723, 1993.

[14] Intel Corp. Futuristic Intel chip could reshape how computers are built, consumers interact
with their PCs and personal devices. Press Release: http://www.intel.com/pressroom/
archive/releases/2009/20091202comp_sm.htm, Dec. 2009.

[15] N. Sitchinava and N. Zeh. A parallel buffer tree. In SPAA, pages 214-223, 2012.

