Sorting, Searching, and Simulation in the MapReduce
Framework

Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang

! Department of Computer Science, University of Califorhigine, USA
goodri ch@cs. uci . edu
2 MADALGO*, Department of Computer Science, University of Aarhus, Dark
{nodari, ginzhang}@madal go. au. dk

Abstract. In this paper, we study the MapReduce framework from an #lgor
mic standpoint and demonstrate the usefulness of our agpimadesigning and
analyzing efficient MapReduce algorithms for fundamentatisg, searching,
and simulation problems. This study is motivated by a goalltfhately putting
the MapReduce framework on an equal theoretical footing wie well-known
PRAM and BSP parallel models, which would benefit both themhend prac-
tice of MapReduce algorithms. Our PRAM and BSP simulaticsults imply
efficient MapReduce solutions for many applications, suckating, 2- and 3-
dimensional convex hulls, fixed-dimensional linear progmang. All our algo-
rithms take a constant number of rounds under the commontierassumptions
for the hardware running MapReduce.

1 Introduction

TheMapReduce framewofb, 6] is a programming paradigm for designing parallel and
distributed algorithms. It provides a simple programminggiface that is specifically
designed to make it easy for a programmer to design a papatigram that can effi-
ciently perform a data-intensive computation. Moreowes a framework that allows
for parallel programs to be directly translated into conagions for cloud computing
environments and server clusters (e.g., see [16]). Thisdveork is gaining wide-spread
interest in systems domains, in that this framework is beised in Google data cen-
ters and as a part of the open-source Hadoop system [19]f@rsgusters, which have
been deployed by a wide variety of enterpriséscluding Yahoo!, IBM, The New York
Times, eHarmony, Facebook, and Twitter.

Building on pioneering work by Feldmaet al. [9] and Karloff et al. [14], our
interest in this paper is in studying the MapReduce framkviimm an algorithmic
standpoint, by designing and analyzing MapReduce algostfor fundamental sort-
ing, searching, and simulation problems. Such a study dmeikistep toward ultimately
putting the MapReduce framework on an equal theoreticairfgavith the well-known
PRAM and BSP parallel models.

* MADALGO is the Center for Massive Data Algorithmics, a canté the Danish National
Research Foundation.
8Seehttp://en.w ki pedi a. or g/ wi ki / Hadoop.

Still, we would be remiss if we did not mention that this framoek is not without
its detractors. DeWitt and Stonebraker [7] mention sevisgles they feel are short-
comings of the MapReduce framework, including that it seem®quire brute-force
enumeration instead of indexing for performing searchegudlly, we feel that this
criticism is a bit harsh, as the theoretical limits of the Ma&pluce framework have yet
to be fully explored; hence, we feel that further theorétitady is warranted. Indeed,
this paper can be viewed as at least a partial refutationeottlim that the MapRe-
duce framework disallows indexed searching, in that we dhowto perform fast and
efficient multi-search in the MapReduce framework.

The MapReduce Frameworka the MapReduce framework, a computation is specified
as a sequence of map, shuffle, and reduce steps that opesededh= {x1, z2,..., 2, }
of values:

— A map stepapplies a functiony, to each valuey;, to produce a finite set of key-
value pairgk, v). To allow for parallel execution, the computation of thedtian
u(x;) must depend only on;.

— A shuffle stegollects all the key-value pairs produced in the previoup istap,
and produces a set of listé;, = (k;v1,v2,...), where each such list consists of
all the valuesy;, such that; = k for a keyk assigned in the map step.

— A reduce stempplies a functionp, to each listL, = (k;v1,v2,...), formed in
the shuffle step, to produce a set of valugsys, The reduction functioryp, is
allowed to be defined sequentially dn, but should be independent of other lists
Ly wherek’ # k.

The parallelism of the MapReduce framework comes from tbetfeat each map or
reduce operation can be executed on a separate processpeimtEntly of others. Thus,
the user simply defines the functionsandp, and the system automatically schedules
map-shuffle-reduce steps and routes data to available gsos including provisions
for fault tolerance.

The outputs from a reduce step can, in general, be used as topanother round
of map-shuffle-reduce steps. Thus, a typical MapReduce atatipn is described as a
sequence of map-shuffle-reduce steps that perform a desitied in a series abunds
that produce the algorithm’s output after the last reduep.st

Evaluating MapReduce Algorithmkleally, we desire the number of rounds in a MapRe-
duce algorithm to be a constant. For example, consider am-afted MapReduce al-
gorithm to count all the instances of words in a documenteGia document]), we
define the set of input values to be all the words in the document and we then pro-
ceed as follows: the Map step, for each waud,in the document, maps to (w, 1).
Then in the Shuffle step, collects all tfie, 1) pairs for each word, producing a list
(w;1,1,...,1), with the number ot’s in each such list equal to the number of times
appears in the document. Finally, the Reduce step, scahdistge; 1,1,...,1), sum-
ming up the number of’s in each such list, and outputs pairs, n,,) as a final value,
wheren,, is the number ofl’s in the list for eachw. This single-round computation
clearly computes the number of times each word appears in

The number of rounds in a MapReduce algorithm is not alwayakiq1, however,
and there are, in fact, several metrics that one can use teureethe efficiency of a
MapReduce algorithm over the course of its execution, fialgithe following:

— We can consideR, thenumber of roundsf map-shuffle-reduce that the algorithm
uses.

— Ifweletn, 1,n, 2, ... denote the mapper and reducer I/O sizes for royrss that
n,; is the size of the inputs and outputs for mapper/redu@eroundr, then we
can defineC,., the communication complexity of round to be the total size of
the inputs and outputs for all the mappers and reducers imdrouthat is,C,. =
>, nri. We can also defing’ = Zf:ol C, — thecommunication complexitipr
the entire algorithm.

— We can lett,. denote thenternal running timefor roundr, which is the maximum
internal running time taken by a mapper or reducer in roungthere we assume
t, > max;{n,,}, since a mapper or reducer must have a running time that is at
least the size of its inputs and outputs. We can also déditad internal running
time ¢ = 327"\ ¢, for the entire algorithm, as well.

We can make a crude calibration of a MapReduce algorithngukia following addi-
tional parameters:

— L: the latencyL of the shuffle network, which is the number of steps that a reapp
or reducer has to wait until it receives its first input in aggivound.

— B: the bandwidth of the shuffle network, which is the numberlefrents in a
MapReduce computation that can be delivered by the shuffieanke in any time
unit.

Given these parameters, a lower bound for the total runming, ", of an imple-
mentation of a MapReduce algorithm can be characterizeollag/t:

R—1
T=1 (Z(tr+L+CT/B)> = Q(t+ RL+ C/B).

r=0

For example, given a documeitof n words, the simple word-counting MapReduce al-
gorithm given above has a worst-case performanéeef1, C = ©(n), andt = O(n);
hence, its worst-case time performarice= ©(n), which is no faster than sequential
computation. Unfortunately, such performance could béeqgommon in the natural-
language documents. For instance, in the Brown Corpus {i&jword “the” accounts
for 7% of all word occurrences.

Note, therefore, that focusing exclusively énthe number of rounds in a MapRe-
duce algorithm, can actually lead to an inefficient alganitfiror example, if we focus
only on the number of roundg, then the most efficient algorithm would always be the
trivial one-round algorithmwhich maps all the inputs to a single key and then has the
reducer for this key perform a standard sequential algorithsolve the problem. This
approach would run in one round, but it would not use any paish; hence, it would
be relatively slow compared to an algorithm that was moreéiel.”

Memory-Bound and I/0O-Bound MapReduce Algorithr8®. as to steer algorithm de-
signers away from the trivial one-round algorithm, recégoathmic formalizations of
the MapReduce paradigm have focused primarily on optirgitfie round complexity
bound, R, while restricting the memory size or input/output size feducers. Karloff
et al. [14] define their MapReduce model, MRC, so that each redsitéd’size is re-
stricted to beO(N'~¢) for some small constamt > 0, and Feldmaret al. [9] define
their model, MUD, so that reducer memory size is restricteoetO (log® V), for some
constant > 0, and reducers are further required to process their inpasingle pass.
These restrictions limit the feasibility of the trivial omeund algorithm for solving a
problem in the MapReduce framework and instead compelighgodesigners to make
better utilization of parallelism.

In this paper, we follow the 1/0-bound approach, as it seestrespond better
to the way reducer computations are specified, but we taken@wsbat more general
characterization than Karlodft al.[14], in that we do not bound the I/O size for reducers
explicitly to beO(N'~¢), but instead allow it to be an arbitrary parameter:

— We defineM to be an upper bound on th©-buffer memory sizéor all reducers
used in a given MapReduce algorithm. That is, we predéefint be a parameter
and require thatr,i : n,; < M.

We then can us@/ in the design and/or analysis of each of our MapReduce algosi.
For instance, if each round of an algorithm has a reduceramttiO size of at mosit/,
then we say that this algorithm is &®©-memory-bound MapReduce algorithwith
parametef) . In addition, if each round has a reducer with an 1/O size priipnal to
M (whose processing probably dominates the reducer’s iateunning time), then we
can give a simplified lower bound on the tin¥e, for such an algorithm as

T = Q(R(M + L)+ C/B).

This approach therefore can characterize the limits ofllgdisan that are possi-
ble in a MapReduce algorithm and it also shows that we shoofitentrate on the
round complexity and communication complexity of a MapReglalgorithm in char-
acterizing its performanceOf course, such bounds fdt andC may depend o/,
but that is fine, for similar characterizations are commothaliterature on external-
memory algorithms (e.g., see [1, 3,4, 18]). In the rest ofpaeger, when we talk about
the MapReduce model, we always mean the I/O-memory-boupdRdduce model.

Our Contributions.In Section 2 we present a BSP-like computational framewdricky
we prove to be equivalent to the I/0-memory-bound MapRedungel. This formula-
tion is more familiar in the distributed algorithms commiynmaking the design and
analysis of algorithms more intuitive. The new formulatadlows a simple simulation
result of the BSP algorithms in the MapReduce model with oavdbwn in the number
of rounds, resulting in straightforward MapReduce implatagons of a large number
of existing algorithms for BSP model and its variants.

4 These measures correspond naturally with tihee and work bounds used to characterize
PRAM algorithms (e.g., see [12]).

In Section 3 we present simulation of CRCW PRAM algorithm®ir general-
ized MapReduce model, extending the EREW PRAM simulatisnlte of Karloff et
al. [14] (which also holds in our generalized model). The only priomkn simulation
of CRCW PRAM algorithm on MapReduce was via the standard CRG\WREW
simulation (which incurgO(log, P) factor slowdown for aP-processor PRAM al-
gorithm) and then applying the EREW simulation of Karloffadt [14]. In contrast,
our simulation achieves only(log,, P) slowdown in the round complexity, which is
asymptotically optimal for a generic simulation.

Our CRCW PRAM simulation results achieve their efficiencyotigh the use of
an implicit data structure we cailhvisible funnel treeslt can be viewed as placing
virtual multi-way trees rooted at the input items, which rieh concurrent read and
write requests to the data items, but are never explicithstoicted.

Our simulation results immediately imply solutions with(log,, N) round and
O(N log,,; N) communication complexities to problems of findingnvex hulland
solvingfixed-dimensional linear programming

For problems with no known constant time CRCW PRAM solutiagsshow that
we can design efficient algorithms directly in our generiggRaduce framework. Specif-
ically, in Section 4 using the idea afvisible funnel treesve develop solutions to the
fundamental problems girefix sumsnd randomizethdexingof the input.

Finally, what is perhaps most unusual about the MapRedaoadwork is that there
is no explicit notion of “place” for where data is stored nor fvhere computations
are performed. This property is perhaps what led DeWitt atothebraker [7] to say
that it does not support indexed searches. NevertheleSgdtion 5 we show that the
MapReduce framework does in fact support efficieniti-searching- the problem of
searching for a number of keys in a search tree. Our solutiddsba low congestion
search structure similar to [10]. However, to keep the comigation complexity low,
our structure is smaller, forcing us to process the quenissnaller batches, which we
pipeline to maintain the optimal round complexity.

For ease of exposition let = log,, V. All our algorithms exhibitO(\) round and
O(AN) communication complexities. Note, that in practice it iasenable to assume
that M = 2(N¢) for some constant > 0, resulting inA\ = O(1), i.e. constant round
and linear communication complexities for all our algarith

2 Generic MapReduce Computations

In this section we define a BSP-like computational model¢hatures the MapReduce
framework.

Consider a set of computing nod®s Let A, (r) be a set of items associated with
each node € V inroundr. A,(r) defines the state of Let f be a sequential function
defined for all nodes. Functightakes as input the staté, (r) of a nodev and returns
a new setB, (r), in the process destroying, (r). Each item ofB,(r) is of the form

® Their original proof was identified for the CREW PRAM modelitbhere was a flaw in that
version, which could violate the 1/0-buffer-memory sizenstaint during a CREW PRAM
simulation. Based on a personal communication, we havadeahat the subsequent version
of their paper will identify their proof as being for the EREWRAM.

(w,a), wherew € V anda is a new item. We define the following computation which
proceeds ink rounds.

At the beginning of the computation only thgut nodes» have non-empty states
A, (0). The state of an input node consists of a single input item.

In roundr, each node with non-empty stated, (r) # () performs the following.
First, v applies functionf on A, (r). This results in the new sk, (r) and deletion of
Ay (r). Then, for each element= (w,a) € B,(r), nodev sends itenu to nodew.
Note that ifw = v, thenv sends: back to itself. As a result of this process, each node
may receive a set of items from others. Finally, the set afived items at each node
defines the new staté, (r 4 1) for the next round. The items comprising the non-empty
statesd, (r) after R rounds define the outputs of the entire computation at whathtp
the computation halts.

The number of round®& denotes theound complexityf the computation. The to-
tal number of all the items sent (or, equivalently, recejudthe nodes in each round
r defines theeommunication complexity, of roundr, that is,C, = " |B,(r)|. Fi-
nally, the communication complexity’ of the entire computation is defined @s=
S O, = S0 ST, |Bo(r)|. Note that this definition implies that nodesvhose
statesA, (r) are empty at the beginning of roundio not contribute to the communi-
cation complexity. Thus, the s&t of nodes can be infinite. But, as long as only a finite
number of nodes have non-empty (r) at the beginning of each round, the communi-
cation complexity of the computation is bounded.

Observe that during the computation, in order for node send items to node
in roundr, v should know the label of the destinatian which can be obtained by
in the following possible ways (or any combination theredj)the link (v, w) can be
encoded inf as a function of the label af and round-, 2) some node might send the
label ofw to v in the previous round, or 3) nodemight keep the label of as part of
its state by constantly sending it to itself.

Thus, the above computation can be viewed as a computatiadymamicdirected
graphG = (V, E), where an edgév, w) € E in roundr represents a possible commu-
nication link between andw during that round. The encoding of eddesw) as part
of function f is equivalent to defining aimplicit graph [13]; keeping all edges within
a node throughout the computation is equivalent to definistic graph. For ease of
exposition, we define the following primitive operationatltan be used withirf at
each node:

— create an item; delete an item; modify an item; keep itefthat is, the iteme will
be sent ta itself by creating an itenfv, z) € B,(r)); send an item: to nodew
(create an itenfw, x) € B,(r)).

— create an edge; delete an edge. This is essentially the sanreae an item and
delete an item, since explicit edges are just maintainedeassi at nodes. This
operations will simplify exposition when dealing with eiqilly defined graphg~
on which computation is performed.

The following theorem shows that the above framework castiine essence of
computation in the MapReduce framewdrk.

% Due to space constraints, all omitted proofs can be foundoipeAdix A.

Theorem 1. LetG = (V, E) and f be defined as above such that in each round each
nodev € V sends, keeps and receives at mkitems. Then computation d# with
round complexityR and communication complexity can be simulated in the I/O-
memory-bound MapReduce model with the same round and caoatian complexi-
ties.

The above theorem gives an abstract way of designing MapiRedigorithms.
More precisely, to design a MapReduce algorithm, we defiaplyé and a sequen-
tial function f to be performed at each nodec V. This is akin to designing BSP
algorithms and is a more intuitive way than defining Map andRe functions.

Note that in the above framework we can easily implement bajllmop primitive
spanning over multiple rounds: each item maintains a couh#t is updated at each
round. We can also implemepéarallel tail recursionby defining the labels of nodes to
include the recursive call stack identifiers.

3 Simulation Results

BSP simulation.The reader may observe that the generic MapReduce mode pfeh
vious section is very similar to the BSP model of Valiant [1éhding to the following
conclusion.

Theorem 2. Given a BSP algorithmd that runs inR super-steps with a total memory
sizeN usingP < N processors, we can simulateusing R rounds and” = O(RN)
communication in the I/O-memory-bound MapReduce framlewiith reducer memory
size bounded by/ = [N/ P].

CRCW PRAM simulationln this section we present a simulation 6CRCW PRAM
model, the strongest variant of the PRAM model, where camaiimvrites to the same
memory location are resolved by applying a commutative gesap operatoyf on all
values being written to the same memory address, suSasMin, Max, etc.

The input to the simulation of a PRAM algorithrhis specified by an indexed set of
P processor itemgyy, ..., pp, and an indexed set of initialized PRAM memory cells,
my,...,my, WhereN is the total memory size used b4. For ease of exposition we
assume that tha® = N i.e.log,; P = O(log,; N) = O(\).

The main challenge in simulating the algorithnin the MapReduce model is that
there may be as many @sreads and writes to the same memory cell in any given step
and P can be significantly larger thai/, the memory size of reducers. Thus, we need
to have a way to “fan in” these reads and writes. We accomfilistby usingnvisible
funnel treeswhere we imagine that there is a differentimpliGit)/)-ary tree rooted at
each memory cell that has the set of processors as its |datgsively, our simulation
algorithm involves routing reads and writes up and downehédrees. We view them
as “invisible”, because we do not actually maintain themlieily, since that would
require© (P N) additional memory cells.

Each invisible funnel tree is an undirectewoted treeZ” with branching factor
d = M/2 and heightL = [log; P] = O(\). The root of the tree is defined to be

" Each undirected edge is represented by two directed edges.

at level0 and leaves at level — 1. We label the nodes il such that the:-th node
(counting from the left) on levdl is defined as» = (I, k). Then, we can identify the
parent of a non-root node= (I, k) asp(v) = (I — 1, | k/d]) and theg-th child of v as
wq = (I + 1,k -d+ q). Thus, given a node = (4, (I, k)), i.e., thek-th node on level
[of the j-th tree, we can uniquely identify the label of its pargfit) and each of itgl
children and without maintaining the edges explicitly.

At the initialization step, we senah; to the root node of thg-th tree, i.e.m; is
sent to nod€j, root) = (j,(0,0)). For each processegr (1 < i < P), we sendr; —
the state of processgf to nodeu;. Again, throughout the algorithm, each node keeps
the items that it has received in previous rounds until tireyeaplicitly deleted.

Each step of the PRAM algorithid is specified as a read sub-step, followed by a
constant-time internal computation, followed by a write-step performed by each of
P processors. We show how to simulate each of these sub-steps.

la. Bottom-up read phase.For each processgs that attempts to read memory loca-
tionm;, nodeu; sends an item encoding a read request (in the following wplgim
say a read request) to theh leaf node of thg-th tree, i.e. to nodé¢j, L — 1,1),
indicating that it would like to read the contents of theéh memory cell.
Forl = L — 1 downto1 do:
— For each node at levell, if it received read request(s) in the previous round,
then it sends a read request to its paggni.
1b. Top-down read phaseThe root node in thg-th tree sends the value; to child
(j, wy) if child wy, has sent a read request at the end of the bottom-up read phase.
Fori=1to L —2do:
— For each node at levell, if it receivedm; from its parent in the previous
round, then it sends:; to all those children who have sentread requests

during the bottom-up read phase. After thateletes all of its items.
Each leafv sendsn; to the nodey; (1 < i < P) if u; has sent a read request at
the beginning of the bottom-up read phase. After thd¢letes all of its items.

2. Internal computation phase. At the end of the top-down phase, each nade
receives its requested memory item, performs the internal computation, updates
the stater;, and sends an itemencoding a write request to the nogeL — 1, 1)
if processomp,; wants to writez to the memory celin;.

3. Bottom-up write phase.For! = L — 1 downto0 do:

— For each node at levell, if it received write request(s) in the previous round,

let z1,...,2r (kK < d) be the items encoding those write requests. i§ not
a root, it applies the semigroup function on inpyt. . ., zx, sends the result
Z' to its parent, and then deletes all of its items. Otherwise,is a root, it
modifies its current memory item td.

When we have completed the bottom-up write phase, we aretindly ready for
simulating the next step in the PRAM algorithm. We have tHefang.

Theorem 3. Given a CRCW PRAM algorithtd with write conflicts resolved accord-
ing to a commutative semigroup operator such tdatuns in7" steps using® proces-
sors andN memory cells, we can simulat in the 1/0-memory-bound MapReduce
framework in the optimaR = ©(AT') rounds and withC' = O(AT'(N + P)) commu-
nication complexity.

Applications.Theorem 2 immediately implig§(\) round and?(AN) communication
complexity MapReduce solutions for problems of sorting aathputing convex hull
via simulation of the corresponding BSP solutions [11, 19Appendix B we present
an alternative randomized algorithm for sorting with theneacomplexity but which
might be simpler to implement in practice than the simutatéthe complicated BSP
algorithm in [11].

By Theorem 3, we can simulate any CRCW (thus, also CREW) PRigdrihm.
For example, simulation of the PRAM algorithm of Alon and Nutp [2] for linear
programming in fixed dimensions produces a MapReduce #gorvith O(\) round
andO(AN) communication complexities.

4 Prefix Sums and Random Indexing

The best known PRAM algorithm for prefix sums runsClog* N) time on Sum-
CRCW model [8], resulting in & (A log™ N) MapReduce algorithm (by Theorem 3).
In this section, we show how we can improve this resulOto\) rounds. We use the
all-prefix-sum solution to design a random indexing of thauity which will be used in
the multi-search algorithm in Section 5.

The all-prefix-sum problem is usually defined on an array t&#gers. Since there is
no notion of arrays in the MapReduce framework, but rathesliection of items, we
define the all-prefix-sum problem as follows: given a coltatiof itemsax;, wherez;
holds an integet; and an index value < i < N — 1, compute for each item; a new
vaIuebZ- = Z;‘:O Q.

The classic PRAM algorithm for computing prefix sums [12] ¢enviewed as a
computation along a virtual binary tree on top of the inplitscompute the prefix sums
in MapReduce we replace the binary tree with the invisiblenkl tree and perform
similar 2-pass computation with the details as follows.

In the initialization step, each input node simply sendigit itema; with index
i to the leaf node = (L — 1,14) of the funnel tree. The rest of the algorithm proceeds
in two phases, processing the node§ione level at a time. The nodes at other levels
simply keep the items they have received during previousdsu

1. Bottom-up phase.Forl = L — 1 downto1 do: For each node on levell do: If v
is a leaf node, it received a single valugfrom an input node. The functiofatw
creates a copy, = a;, keeps; it had received and sends to the parenp(v) of
v. If vis anon-leaf node, lety, w1, ..., wq_, denotev’s child nodes in the left-to-
right order. Node received a set af items A, (r) = {Swgs Swy s« - - s Sw,_, from
its children at the end of the previous round A, (r)) computes the sum, =
Zj;é s5w,, S€Ndss, to p(v) and keeps all the items received from the children.

2. Top-down phase.Forl = 0to L — 1 do: For each node on levell do: If v is the
root, it had received itemd,, (r) = {sw, Swys - - -, Sw,_, } at the end of the bottom-
up phase. It creates for each child (0 < i < d — 1) a new items; = Z;;B Sw,
and sends it tay;. If v is a non-root node, let,, be the item received from its
parent in the previous round. Inductively, the vakyg, is the sum of all items
“to the left” of v. If v is a leaf having a unique item, then it simply outputs

ak + sp(v) as a final value, which is the prefix suE;?:O a;. Otherwise, it creates

for each childw; (0 < i < d—1) anew items,, + Z;;B 5, and sends it ta;.
In all cases, all items af are deleted.

Lemma 1. Given an indexed collection &f numbers, we can compute all prefix sums
in the 1/0-memory-bound MapReduce frameworkKifh\) round andO(AN) commu-
nication complexities.

Quite often, the input to the MapReduce computation is aectithn of items with
no particular ordering or indexing. If each input elemeransotated with an estimate
N < N < N¢ of the size of the input, for some constants 1, then we can modify
the all-prefix-sum algorithm to generate a random indexwmgtiie input with high
probability as follows.

We define the invisible funnel tréE on N3 leaves, thus, the height of the tree is
L = [3log, N1 = O()). In the initialization step, each input node picks a random
index: in the rangd0, N3 — 1] and sends; = 1 to the leaf node = (L — 1,4) of 7.
Letn, be the number of items that leafeceives. Note it is possible that > 1, thus,
we perform the all-prefix-sums computation with the follogidifferences at the leaf
nodes. During the bottom-up phase, we define- n,, at the leaf node. At the end of
the top-down phase, each leafssigns each of the item that it received from the input
nodes the indices,) + 1, 5,() + 2,...,5,() + 1y IN @ random order, which is the
final output of the computation.

Lemma 2. A random indexing of the input can be performed on a colleabiodata in
the 1/0O-memory-bound MapReduce frameworklif\) round andO(AN) communi-
cation complexities with high probability.

5 Multi-searching and Sorting

Let 7 be a balanced binary search tree @htle a set of queries. Lé¥ = |7| + |Q|.
The problem of multi-search asks to annotate each query) with aleafv € 7', such
that the root-to-leaf search path fpin 7 terminates at.

Goodrich [10] provides a solution to the multi-search pesblin the BSP model.
His solution first converts the binary search tree into ad&-trith the branching param-
eterM = [N/P], i.e. each node of the B-tree conta®&)M) routing entries and is of
depthO(\) = O(log,, N). Then it replicates each node to relieve congestion during
query routing by estimating the query load of each node byimga small sample of
the queries down the B-tree. The replicated nodes are ctathcothers in such a way
that the set of nodes reachable from each replicated roa, mothprise the skeleton of
the original B-tree. Finally, all the queries are distriitandomly across all the copies
of the root nodes and propagated down this search stru€tuoethe leaf nodes (and
their copies).

The depth of7 is ©(\) with each level consisting & (|Q|/M) B-tree nodes each
containing® (M) routing elements. Thus, the size @fis O(|7] + A\ Q|). And by
Theorem 2, we obtain a MapReduce solution to multi-sear¢h @i(\) round and
O\|T| + A?|Q]) = O(A\2N) communication complexities.

In this section we present a solution that improves the comication complexity
to optimalO(AN), while still achievingO()\) round complexity with high probability.
Note, that if|Q| < N/, then the size of the BSP search structure is only linear with
N and we can perform the simulation of the algorithm w@\N) communication
complexity. Thus, for the remainder of this section we asstimt|Q| > N/\.

Multi-searching.To solve the multi-search problem in MapReduce with optih@ V)
communication complexity, consider a random partitio@afto A subset$), Qo, ..., Qx
each containin@(N/)\) queries. By the above discussion, we clearly can construct a
search structuré based on the query s@t, consisting 0f9()\) levels each containing
O(N/A) routing elements, i.dG| = O(N). We can also implement a MapReduce al-
gorithm A which propagates any query €t of size|Q’| = O(IN/\) down this search
structureG.

To answer the multi-search queries for all querigsve proceed ir©(\) rounds.

In the firstA rounds, in round, 1 < i < A, we feed new subsé&p; of queries to the
O(N/\) root nodes of7 and propagate the queries down to the leaves using algorithm
A. This approach can be viewed as a pipelined executionnotilti-searches of.

Finally, to implement the random partitioning &f into A subsets, we perform a
random indexing for) (Lemma 2) and assign query with indgxo subset); /1. A
nodev containing a query € Q; keepsy (by sending it to itself) until round at which
point it sends; to the appropriate source node®f

Theorem 4. Given a binary search tre& of sizeN, we can perform a multi-search
of N queries ovef in the I/O-memory-bound MapReduce modeDifh) rounds with
O(AN) communication with high probability.

Proof (Sketch)Let L4,..., Ly be theX levels of nodes ofy. First, all query items in
the first query batcly); pass (i.e., be routed dowr); (1 < j < A) in one round with
high probability. This is because for each nadim L;, at mostM query items oiQ),
will be routed tov with probability at leasit — N —¢ for any constant. By taking the
union of all the nodes il ;, we have that with probability at least- O(N/X) - N~¢,
(1 passL; in one round. Similarly, we can prove that a@y (1 < ¢ < \) can pass
L; (1 < j < X)inone round with the same probability since all s@shave equal
distributions. Since there avebatches of queries and they are fed i6tdn a pipeline
fashion, by union bound we have that with probability atigas\?- O(N/\)- N—¢ >
1—1/N (by choosing a sufficient large constahthe whole process completes within
O(A) rounds. The communication complexity follows directly base we only send
O(|G] +|Q|) = O(N) items in each round.

Applications and discussiorJsing the solution to multi-search problem, in Appendix B
we present a simple sorting algorithm which might be easiémplement in practice
than the simulation of the BSP algorithm from Section 3.

The version of the BSP model used in [10] allows a processkeép arunlimited
number of items between rounds while still requiring eadtpssor to send and receive
at most N/ P| = M items. A closer inspection of [10] reveals that the prohghthat
some processor will contain more thai items in some round is at mosf ¢ for

any constant > 1. Therefore, with high probability it can still be simulatedour
MapReduce framework. With some additional work, we can cedhis probability of
failure to N~ with a queuing strategy that we describe in Appendix C. Theuing
algorithm might be of independentinterest because it reameame of the requirements
of the framework of Section 2.

Acknowledgments

We would like to thank Riko Jakob for pointing out the lowernaol for our CRCW
PRAM simulation.

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

Aggarwal, A., Vitter, J.S.: The input/output complexity sorting and related problems.
Commun. ACM 31, 1116-1127 (1988)

Alon, N., Megiddo, N.: Parallel linear programming in fixeimension almost surely in
constant time. J. ACM 41(2), 422—-434 (1994)

. Arge, L.: External-memory algorithms with applicationsGIS. In: Algorithmic Founda-

tions of Geographic Information Systems. pp. 213-254.rigjer-Verlag (1997)

. Arge, L.: External memory data structures. In: Handbdokassive data sets, pp. 313—357.

Kluwer Academic Publishers, Norwell, MA, USA (2002)

. Dean, J., Ghemawat, S.: MapReduce: simplified data psimzeen large clusters. Commun.

ACM 51(1), 107-113 (2008)

. Dean, J., Ghemawat, S.: MapReduce: a flexible data piages®l. Commun. ACM 53(1),

72-77 (2010)

. Dewitt, D.J., Stonebraker, M.: MapReduce: A major stegkbards. Database Col-

umn (2008), http://databasecolumn.vertica.com/da&bawvation/mapreduce-a-major-
step-backwards/

. Eisenstat, S.CO(log* n) algorithms on a Sum-CRCW PRAM. Computing 79(1), 93-97

(2007)

. Feldman, J., Muthukrishnan, S., Sidiropoulos, A., St€in Svitkina, Z.: On distributing

symmetric streaming computations. In: Teng, S.H. (ed.) 8Qip. 710-719. SIAM (2008)
Goodrich, M.T.: Randomized fully-scalable BSP techeifor multi-searching and convex
hull construction. In: SODA. pp. 767-776 (1997)

Goodrich, M.T.: Communication-efficient parallel $ogt SIAM Journal on Computing
29(2), 416 — 432 (1999)

JaJa, J.: An Introduction to Parallel Algorithms. Asdoh-Wesley, Reading, Mass. (1992)
Kannan, S., Naor, M., Rudich, S.: Implicit represeontanf graphs. In: 20th Annual ACM
Symposium on Theory of Computing (STOC). pp. 334—343 (1988)

Karloff, H., Suri, S., Vassilvitskii, S.: A model of comtion for MapReduce. In: Proc.
ACM-SIAM Sympos. Discrete Algorithms (SODA). pp. 938-94®10)

Kucera, H., Francis, W.N.: Computational Analysis oe$emt-Day American English.
Brown University Press, Providence, RI (1967)

Rafique, M.M., Rose, B., Butt, A.R., Nikolopoulos, D.Supporting MapReduce on large-
scale asymmetric multi-core clusters. SIGOPS Oper. Syst. 43(2), 25-34 (2009)

Valiant, L.G.: A bridging model for parallel computaticComm. ACM 33, 103-111 (1990)
Vitter, J.S.: External memory algorithms and data stmes: dealing with massive data.
ACM Comput. Surv. 33(2), 209-271 (2001)

White, T.: Hadoop: The Definitive Guide. O'Reilly Medlagc. (2009)

A Omitted Proofs

A.1 Proofof Theorem 1

Proof. We implement round- = 0 of computation onG in the I/O-memory-bound
MapReduce framework using only the Map and Shuffle steps esiy eoundr > 0
using the Reduce step of round- 1 and a Map and Shulffle step of round

1. Roundr = 0: (a) ComputingB,(r) = f(A,(r)): Initially, only the input nodes
have non-empty setd,(r), each of which contains only a single item. Thus, the
outputB,(r) only depends on a single item, fulfilling the requirement afMWe
define Map to be the same 4si.e., it outputs a set of key-value tuples, x), each
of which corresponds to an itefw, ;) in B, (r). (b) Sending items to destinations:
The Shuffle step on the output of the Map step ensures that@ég with keyw
will be sent to the same reducer, which corresponds to thewad G.

2. Roundr > 0: First, each reducer that receives a tuplév; z1, z2, ..., zx) (@s a
result of the Shuffle step of the previous round) simulatesctimputation at node
vin G. Thatis, it simulates the functioghand outputs a set of tuplés, =), each of
which corresponds to an item 1, (r). We then define Map to be the identity map:
On input(w, x), output key-value paifw, x). Finally, the Shuffle step of round
completes the simulation of the rounaf computation on grapty¥ by sending all
tuples with keyw to the same reducer that will simulate nade G in roundr + 1.

Keeping an item is equivalent to sending it to itself, thus;lenode inG' sends and
receives at mosd/ items. Therefore, no reducer receives or generates moneMha
items implying that the above is a correct I/O-memory-boMagReduce algorithm.

A.2 Proof of Theorem 2: Simulation of BSP Algorithms

Proof. In the BSP model [17], the input of siz¥ is distributed amongd® processors
so that each processor contains at mst= [N/P] input items. A computation is
specified as a series of super-steps, each of which invoaas@ocessor performing
an internal computation and then sending a set of ugd tmessages to other processors.
The initial state of the BSP algorithm s an indexed set otpssorgp1, p2, ..., pp}
and an indexed set of initialized memory cltg; 1,m1 2, ..., mp.m }, Such tham, ;
is the j-th memory cell assigned to processo®ince our framework is almost equiva-
lent to the BSP model, the simulation is straightforward:

— Each processar; (1 < i < P) defines a node; in our generic MapReduce graph
G, and the internal state; of p, and its memory cell§m, 1,...,m;.,} define
the itemsA,,, of nodev;. In the BSP algorithm, in each super-step each processor
p; performs a series of computation, updates its interna statl memory cells to
w; and{m} ,,...,m} 1, and sends a set of messages, ..., i;, t0 processors
Djrs--- ,pj,c’, where the total size of all messages sent or received by cegsor
is at mostM. In our MapReduce simulation, functighat nodev; performs the
same computation, modifies items;, m; 1, ..., m;m} to {7}, m},...,m;
and sends itemg;,, . .., u1;, to nodesy;, , ..., vj,.

A.3 Proof for Theorem 3: Simulation of CRCW PRAM Algorithms

Proof. Each parallel step of the CRCW PRAM algorithm is simulated}fyt) rounds
in the 1/0-memory-bound MapReduce algorithm, and the taahber of items sent in
each round i©9(N + P).

Now we show that the round complexity of our simulation regutight. Consider
the problem of summing uy integers. In the Sum-CRCW PRAM model this problem
can be solved in a single parallel step with= N processors. However, we show that
it takes at least?(log,, N) = £2(\) rounds to solve this problem in the MapReduce
model.

Notice that in order for some nodein our generic MapReduce model to compute
the correct answer, it must collect information from eachhaf N input nodes. The
proof is by induction on the size of the input. Assume thatdoyn < N it takes
at leastlog,, n rounds to compute the sum afelements in the MapReduce model
(the inductive hypothesis). Clearly, far < M this is true because each input node
holds only a single item and needs to send ivtdn the last roundyp can collect
information only from at mosfi/ nodes due to our constraint on the buffer size. By
the pigeonhole principle, at least one of thdgenodes has already computed the result
based on the information from at least= N/M input nodes. Let: be this node. By
our inductive hypothesis it takes at le&st,; n = log,, N — 1 rounds foru to perform
this computation. The lower bound follows.

A.4 Proof for Lemma 1

Proof. The fact that the algorithm correctly computes all prefix susby induction
on the valuess,(,. In each round, each node sends and receives at hdogéms,
fulfilling the condition of Theorem 1. The total number of rals is2L. = O(\) plus
the initial round of sending input elements to the leave® of he total number of items
sent in each round is dominated by items senf\bjeaves, which i$2(N') per round.
Applying Theorem 1 completes the proof.

A.5 Proof for Lemma 2

Proof. First, note that the probability that, > M at some leaf vertex is at most
N—2M) Thus, with probability at least — N—(*) no leaf and, consequently, no
node of7 receives more tha@® (M) elements. Second, note that at mddeaves of the
funnel tree7 haveA,(r) #). Since we do not maintain the edges of the tree explicitly,
the total number of items sent in each round is again dondnayethe items sent by
at mostN leaves, which iSO(N) per round. Finally, the round and communication
complexity follows from Lemma 1.

B Sorting

In this section, we show how to obtain a simple sorting atbhaniin the MapReduce
model by using our multi-search algorithm from Section 5.

Again, since there is no notion of arrays in MapReduce, hilteracollections of
items, we define the problem sbrtingas follows: given an indexed collection of com-
parable itemsX, compute for each item; € X the number of other items iX that
are smaller tham;. For two itemsz; andx; with equal value, we break the tie by the
value of their indice$ andy, i.e. we can assume that all values are distinct.

First consider the following simple brute-force sortinguk:

Lemma 3. Given a setX of N indexed comparable items, we can sort then®ip\)
rounds and?(AN?) communication complexity in the MapReduce model.

Proof. Consider the following CRCW PRAM algorithm witR = N2 processors.

1. Each processgy; ; (i # j) reads itemr; andx;, compares them and stores in the
matrix entryA[i, j] the value) if x; < x; and valuel otherwise.

2. For each row of matrix A, in parallel, the processogs 1, ..., p; x compute the
sumk; = Z;VZI Ali, j], which equals the number of iteres that are smaller than
T

We can implement the above algorithm in MapRedua@(n) rounds and? (AN ?)
communication complexity as follows: The first step is impénted by Theorem 3 (or
using the idea oinvisible funnel treeslirectly in MapReduce) and the second step by
Lemma 1.

Now we are ready to describe a simple randomized sortingitthgo with optimal
O(A) round and?(AN) communication complexities.

1. Pick@(v/N) random pivots. Sort the pivots using brute-force sortirgpgthm.
This results in the pivots being assigned a unique indes/ialthe rangél, v/N|.

2. Build a search tree on the set of sorted pivots as the led\bs tree.

3. Perform a multi-search on the input items over the seasgh The result is the
label associated with each item which is equal to the “buckéhin which the
input is partitioned into.

4. In parallel, apply steps 1 through 3 to each bucket to olits total of©(N3/4)
buckets.

5. Apply brute force sorting algorithm to each bucket in fiata

Theorem 5. A set of N items can be sorted in the MapReduce modeDin\) round
andO(AN) communication complexities.

Proof. The first four steps of the algorithm can be performed usingibas 2 and 3
and Theorem 4 it© () rounds and)(AN) communication complexity.

With high probability, the first application of the first tlrsteps of the algorithm
creates buckets of size at m@3t/ V). The second application creates buckets of size
at mostO(N'/*) = O(v/N). Thus, the last step of the algorithm runstxi\) rounds
andO(AN) communication complexity.

C FIFO Queues in MapReduce Model

As mentioned in Section 5, with probability— N ~¢ for any constant > 1 no pro-
cessor in the BSP algorithm for multi-searching containsentikan) items. Thus, the
algorithm for multi-search in Section 5 can be implementethe I/0O-memory-bound
MapReduce framework with high probability.

However, the failure of the algorithm implies a crash of auest in the MapReduce
framework, which is quite undesirable. In this section wesent a queuing strategy
which ensures that no reducer receives more fiaitems, which might be of indepen-
dentinterest.

Consider the following modified version of the generic MagRee framework from
Section 2. In this version we still require each nade V to send at mosd/ items.
However, instead of limiting the number of items that a nodegs or receives to be
M, we only require that in every round at madgt different nodes send to any given
nodew, and functionf takes as input a list of at mosat’ items. To accommodate the
latter requirement, if a node receives or contains more fiaitems, the excess items
are kept within the node’s input buffer and are fed into fiorcyf in batches ofo (M)
items per round in a first-in-first-out (FIFO) order.

In this section we show that any algorithhwith round complexityR and com-
munication complexityC' in the modified framework can be implemented using the
framework in Section 2 with the same asymptotic round andrnesanication complex-
ities.

We simulate algorithmA4 by implementing the FIFO queue at each nedey a
doubly-linked listL, of nodes, such that, N L, = () forallv # wandL, NV =
for all v € V. Each nodes € V keeps a pointehead;,, to the head of its list.,.

In addition,v also keepsiyq.q, the number of query items atady,, . If L, is empty,
heady,, points atv andny..q = 0. Throughout the algorithm we maintain an invariant
that for each doubly-linked list,,, each node i, contains[M /4, M /2] query items
exceptthe head node, i.e., the one containing the last iebesprocessed in the queue,
which contains at most/ /2 query items. We simulate one round.4by the following
three rounds. LeT N (v) andOUT (v) denote the set of in- and out-neighbors of node
v € V, respectively. That is, for each € ZN (v), (u,v) € E and for eachw €
OUT (v), (v,w) € E.

R1. Each node € V that wants to send,, ,, query items taw € OUT (u), instead of
sending the actual query items, semgs, to v.

R2. Each node € V receives a set of different values, ., ny, v, - - - , 7y, 0 fromits
in-neighborsuy, us, ..., u, (k < M). For convenience we defing,, , 2 Nhead-
Next, v partitions the sef0,1,...,k} into setsSy,...,Smn, m < k, such that
M/4 <3 e Muyo < M/2foralll <i<m—1land} ;g N0 < M/2.
W.l.o.g., assume thdt € S;. For eachS;, we will have a corresponding node
in the list L,: We letw; = heady,, and for eachs;, 2 < i < m we pick a new
nodew;, create edge@u;, w;_1) and(w;_1,w;), and send it to nodes; andw;_1,
respectively. For each € S;, we also notifyu; that it should send all its queries
to w; by sending the label oi; to u;. The only exception to this rule is that if
wy # v andw; contains the edg@u:, v), i.e. itis the first node i, In this case,

for eachj € S; eachu; should send queries directly to Finally, we update the
pointerheady,, to point tow,, and update,c.q = Zjesm N 0, UNIESSW, = 0,
in which casei,qq = 0.

R3. Each node;; € ZN (v) receives the label of a node; from v in the previous
rounds. It sends all its query itemsdg. Note that ifw; = v, all items will be sent
to v directly. At the same time, each node¢ V, i.e.w € L,, that has an edge
(w,v) for somev € V sends all its items to and extracts itself from the list. The
nodew accomplishes this by deleting all edges incidenutand by sending to its
predecessor préa) in the queud., a new edgépredw), v), thus, linking the rest
of the queue ta.

Theorem 6. Let A be an algorithm in the modified MapReduce framework, where in
every round each node is required to send at midstems, but is allowed to keep and
receive an unlimited number of items as long as they arrigmfat most\/ different
nodes, with excess items stored in FIFO input buffer andrfedfunctionf in blocks of
size at mosi\/. If A runs in R round complexity and’ communication complexity in
the modified framework, then we can implemdrit the original I/0-memory-bound
MapReduce framework i@ (R) rounds and?(C) communication complexity.

Proof. First, itis easy to see that our simulation ensures that eadb keeps as well as
sends and receives at magtitems. Next, note that in every three rounds (ro8hdz¢+
1,3t + 2), each node € V routesmin{©(M), k! } items, wherek! is the combined
number of items in the queue, and the number of items thak in-neighbors send to

v during the three rounds. This is within a constant factothefiumber of items that
v routes in round in algorithm A. Finally, the only additional items we send in each
round are the edges of the queyds, | v € V'}. Note that we only need to maintain
O(1) additional edges for each node of edgh And since these nodes are non-empty,
the additional edges do not contribute more than a constaturfto the communication
complexity.

Applications. The DAG G of the multi-search BSP algorithm [10] satisfies the require
ment that at most/ nodes attempt to send items to any other node. In additisonife
processor of the BSP algorithm happens to keep more tiatems, the processing
of these items is delayed and can be processed in any ordediimg FIFO. Thus, the
requirements of Theorem 6 are satisfied.

We do not know how to modify our random indexing algorithm ecgon 4 to fit
the modified framework. Thus, we cannot provide a Las Vegagsridhm. However,
the above framework reduces the probability of failure frésim* (1) to the probability
of failure of the random indexing step, i.eV,”**(™) which is much smaller for large
values ofM .

The modified framework might be of independent interest beedt allows for an
alternative way of designing algorithms for MapReduce. dntipular, it removes the
burden of keeping track of the number of items kept or sent hgde.

