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Abstract—The parallel external memory (PEM) model has
been used as a basis for the design and analysis of a wide range
of algorithms for the private-cache multi-core architectures.
Recently a parallel version of the distribution sweeping frame-
work was introduced to efficiently solve a number of orthogonal
geometric problems in the PEM model. In this paper we
improve the framework to the optimal O(sortP (N)+K/PB)
I/Os, where P is the number of cores/processors,B is the
number of elements that fit into a cache-line,N and K are
the sizes of the input and output, respectively, andsortP (N)
denotes the I/O complexity of sortingN items on aP -processor
PEM model.

We achieve this with a new one-dimensional batched range
counting algorithm on a sorted list of ranges and points that
achievesO((N + K)/PB) I/O complexity, where K is the
sum of counts of all the ranges. The key to achieving efficient
load balancing among the processors for this problem is a new
method to count the output without enumerating it, which
might be of independent interest.

Keywords-parallel external memory, PEM, multicore algo-
rithms, computational geometry, parallel distribution sweeping

I. I NTRODUCTION

Multicores are becoming a norm among the commodity
hardware. The computers of an average user today contain
two to four cores. But recently Intel announced a 48-
core prototype [1] and the number is projected to reach
hundreds of cores in the near future [2]–[4]. Thus, there
is a need for algorithmic techniques to fully take advantage
of the parallelism associated with such a large number of
processing cores [5].

To hide the latency of accessing main memory modern
multicores implement low-latency caches which are private
for each processor. This architecture became commonly
know as private-cache chip multiprocessor (CMP). To fully
take advantage of such architecture, there is a need for
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Figure 1. The PEM model

algorithms that minimize access to shared memory and
consequently, optimize the usage of private caches.

In this paper we improve the results of a recent paper [6]
and provide techniques to achieve optimal cache utilization
for output-sensitive geometric problems in the parallel ex-
ternal memory model – a private-cache CMP model.

A. Model of Computation and Previous Work

In this paper we study geometric algorithms in theparallel
external memory(PEM) model of Arge et al. [7]. The model
is a parallel extension of theexternal memorymodel of
Aggarwal and Vitter [8] (see Figure 1). It consists ofP
processors, each with a private cache of sizeM for each
processor. To perform any operation on data, a processor
must first load the data into its cache. The caches are
private to the processors, that is, each processor can access
only its own cache. The inter-processor communication is
conducted via processors writing to and reading from a
shared memory. The data is transferred between the memory
and caches in blocks ofB elements. During oneinput-output
(I/O) operation, each processor can transfer a single such
block of elements between shared memory and its cache.
Thus, during a single parallel I/O operation up toP blocks
can be transferred between the shared memory and theP
caches. One of the metrics of the PEM model isparallel
I/O complexity, which counts the number of parallel I/O
operations performed during execution of an algorithm. Just
as in the PRAM model, different assumptions can be made



when multiple processors attempt to read or write from the
same block. In this paper we allow any number of processors
concurrently reading the same block, but disallow concurrent
writes.

The PEM model is the simplest model of current multi-
core architecutures, focusing on the challenges of combining
parallelism with the requirement for spatial locality for
efficient use of caches. A number of problems have been
studied in the PEM model. Arge et al. [7] study a number
of fundamental combinatorial problems such as prefix sum
operation and sorting. In another paper [9], solutions to
fundamental problems on graphs are presented.

A number of other results have been obtained in the
more complicated cache-oblivious and resource obliviuos
multicore models. In [10], Bender et al. study concurrent
searching and updating of cache-oblivious B-trees by mul-
tiple processors. In [11]–[16] several different multicore
models are considered and cache- and processor-oblivious
algorithms are presented for fundamental combinatorial,
graph, and matrix-based problems.

Most recently, Ajwani et al. [6] study the distribution
sweeping technique [17] in the PEM model. They present
a parallel version of the technique that has been very suc-
cessful at solving geometric problems I/O-efficiently in the
sequential external memory model [17]. Using the parallel
distribution sweeping the authors show how to solve a num-
ber of two-dimensional orthogonal geometric problems, such
as orthogonal line segment intersection reporting, orthogonal
range reporting and reporting all pairs of overlapping rect-
angles in the PEM model. What distinguishes their paper
from other results in multicore models is that their solutions
to the problems are output-sensitive, which means that the
running time and the I/O complexity depend on the size of
the output reported. The difficulty with the output sensitivity
in the parallel setting lies in partitioning the input among
the processors so that each processor reads roughly equal
fractions of the input, while producing equal fractions of
the output. The authors present techniques to compute the
size of the output and balance the work based on this
information. However, this step for computing the size of the
output seems to be the bottleneck for achieving the optimal
I/O complexity for the geometric problems they considered.
They describe two different solutions, one that is I/O-optimal
in the size of the input and the other that is optimal in the
size of the output, but neither achieves optimality in both
parameters.

While output-sensitive algorithms haven’t been studied
before [6], there is related work in the sequential external
memory [17] and cache-oblivous [18], [19] models, as well
as in the PRAM model [20], [21]. However, the sequential
external memory and cache-oblivious solutions lack the
requirement to load balance the work among processors,
while the PRAM solutions rely on the fine-grained access
to the shared memory.

B. New Results

In this paper we improve the results of Ajwani et al. [6]
and present a solution to the line segment intersection re-
porting problem that exhibitsO(sortP (N)+K/PB) parallel
I/O complexity, which is asymptotically optimal in the sizes
of both the input and the output. Our main results are stated
in Theorems 3 and 4.

To achieve this bound we develop a new technique to
solve the one-dimensional batched range counting problem
on a sorted input of ranges and points, which might be of in-
dependent interest. Our algorithm (presented in Section IV)
exhibitsO((N +K)/PB) I/O complexity, whereK is the
sum of all the range counts. This is an improvement over
previous best known result ofO(sortP (N)+K/PB). While
the equivalent bound ofO((N + K)/B) in the sequential
external memory model is not a very exciting result for a
counting problem because the count can be performed by
enumerating the whole output, the uniqueness of our result
in the PEM model lies in the fact thatK/P , the size of
the output that each processor may access, might be smaller
than the number of points falling within some range. Thus, to
achieve theO((N+K)/PB) I/O complexity, the processor
must be able to count without enumerating the whole output.

Throughout this paper, we will assume that the geometric
objects contain only a constant number of endpoints and
each endpoint stores information about the other endpoints
in one of its fields. We will also assume, unless stated other-
wise, thatP ≤ min{N/B2, N/(B logN)} andM = BO(1).
The assumptionsP ≤ N/B2 andM = BO(1) were stated
in [7] and are required to prove the sorting bounds, while
P ≤ N/(B logN) is used in [6] to prove bounds for the
distribution sweeping algorithms.

II. TOOLS AND NOTATIONS

In this section, we review the primitives that we use
repeatedly throughout this paper. These primitives have been
initially described in [7] and [6] or are simple extensions
thereof.

Prefix sum and compaction.Given an arrayA[1 . .N ],
the prefix sumproblem is to compute an arrayS[1 . .N ]
such thatS[i] =

∑i
j=1 A[j]. Given a second boolean

array M [1 . .N ], the compaction problem is to arrange
all elementsA[i] such thatM [i] = true consecutively at
the beginning ofA without changing their relative order.
PEM algorithms for these problems with I/O complexity
O(N/PB + logP ) = O(N/PB) are presented in [7] (also
see [22]).

Multi-way distribution. Given an array ofN elements
with each element annotated with one ofd properties, the
d-way distribution problemasks to generated contiguous
arrays, each consisting of elements containing the same
property. A distribution isstable if the relative order of
elements in the resulting arrays is the same as in the input



array. The stabled-way distribution problem can be solved
in the PEM model inO(N/PB) I/Os for any constantd.

The solution is a simple application of parallel scan
and compaction: each processor scans an equal fraction of
the input and distributes its elements amongd different
lists. Finally, for each ofd properties, the processors run
a compaction operation on the generated arrays of that
property. Sinced is a constant, the compaction operations
run in O(N/PB + logP ) = O(N/PB) I/Os.

Sorting. Arge et al [7] show that an array ofN elements
can be sorted in the PEM model inO( N

PB logM/B
N
B ) I/Os.

We will use sortP (N) to denote the I/O complexity of
sortingN elements.

Global load balancing. Let A1, A2, . . . , Ar be a col-
lection of arrays withr = O(P ) and

∑r
j=1 |Aj | = N ,

and assume each elementx has a positive weightwx. Let
wmax = maxx wx, Wj =

∑

x∈Aj
wx andW =

∑r
j=1 Wj . A

global load balancingoperation assignscontiguoussubar-
rays ofA1, A2, . . . , Ar to processors so that only aconstant
number of subarrays are assigned to each processor and the
total weight of the elements assigned to any processor is
O(W/P + wmax). This operation can be implemented by
running a constant number of prefix sum and compaction
operations and, hence, takesO(N/PB) I/Os. The details
of the algorithm can be found in [6] but for the sake of
completeness we reproduce them in Appendix A.

III. PARALLEL DISTRIBUTION SWEEPINGFRAMEWORK

In this section we review the parallel distribution sweeping
framework of Ajwani et al. [6].

Parallel distribution sweeping recursively divides the
plane into vertical slabs, starting with the entire plane as
one slab and in each recursive step dividing a given slab
into d := max{2,min{

√

N/P,M/B}} child slabs; refer
to Figure 2. This division is chosen so that each slab
at a given level of recursion contains roughly the same
number of objects (e.g., horizontal segment endpoints and
vertical segments). The lowest level of recursion divides
the plane intoP slabs, each containingΘ(N/P ) input
elements. Viewing the recursion as a rooted tree defines
leaf invocations and children of a non-leaf invocation. An
invocation on slabσ at thekth recursive level is denoted as
Ikσ . All invocations at the same recursive level are processed
in parallel.

Each invocationIkσ receives as input ay-sorted list
Y k
σ containing horizontal segments and vertical segment

endpoints. The root invocationI0
R2 contains all horizontal

segments and vertical segment endpoints of the input and
Y 0
R2 is generated by sorting the input by they-coordinate.

For a non-leaf invocationIkσ , let Ik+1
σ1

, Ik+1
σ2

, . . . , Ik+1
σd

de-
note its child invocations. In processingIkσ , we report all
intersections between the vertical segments inσ and the
portions of horizontal segments spanning some child slab

Ik+1
σ1

Ik+1
σ2

Ik+1
σ3

Ik+1
σ4

Ikσ

h1

h2

h3

v1

v2

Figure 2. InvocationIkσ of the distribution sweeping framework. Given
the above segments, the lists generated at invocationIkσ look as follows:
Y k+1
σ1

= {h2}, Y k+1
σ2

= {v1}, Y k+1
σ3

= {h3}, Y k+1
σ4

= {v2, h2, h3};
Rk

σ2
= {v1, h2}, Rk

σ4
= {v2}. Note that the intersection betweenh1 and

v2 is reported at theparent invocation ofIkσ : sinceh1 spans the whole slab
σ = ∪4

j=1
σj , it belongs toY k−1

σ and does not belong toY k
σ , therefore, is

not an input to invocationIkσ . Also note that althoughh2 spansσ3, it does
not participate in an intersection inσ3 and, therefore, it does not appear in
Sk
σ3

and, consequently, inRk
σ3

.

σj (for some1 ≤ j ≤ d). Formally, letEk
σj

denote they-
sorted list of horizontal segments inY k

σ with an endpoint
in σj , Sk

σj
the y-sorted list of horizontal segments inY k

σ

spanningσj and with an intersection inσj , and V k
σj

the
y-sorted list of vertical segment endpoints inY k

σ contained
in σj . For each child slabσj the solution constructs ay-
sorted listRk

σj
:= Sk

σj
∪V k

σj
, reports all intersections between

segments inRk
σj

, and then recurses on each child invocation
Ik+1
σj

with inputY k+1
σj

:= Ek
σj
∪V k

σj
. An example of the lists

generated at invocationIkσ is illustrated in Figure 2.
At every leaf invocationIkσ all intersections between the

elements inY k
σ are found using sequential I/O-efficient

techniques, while carefully balancing the work among pro-
cessors. (For details, see [6].)

The suboptimality of the solution of Ajwani et al. [6]
arises from two challenges, which in turn stem from the
requirement to balance the load of reporting the intersections
among the processors.

The first challenge arises from the fact that the reporting
phase of the line segment intersection reporting algorithm
in [6] requires that no vertical segment participates in
more thanK ′ := max{N/B2,K/(P logd P )} intersections.
Call a segmentheavy if it participates in more thanK ′

intersections, andlight otherwise. The authors address this
requirement by splitting each heavy segment into a set
of light ones right before reporting intersections at each
recursive level. Their solution requiresO(sortP (N)) I/Os
at each recursive level, which over all recursive levels adds
up to the suboptimalO(sortP (N) logd P ) I/O complexity. In



Section VI we present a different approach to transforming
heavy segments into the set of light ones. In particular, we
divide heavy vertical segments into light ones as a prepro-
cessing step to the whole intersection reporting algorithm.
This preprocessing step takesO(sortP (N)) I/Os which is
within the bounds of an optimal solution for the line segment
intersection reporting problem.

The second challenge arises from the requirement to
balance the work of reporting intersections at each recursive
level k, which in turn requires the knowledge ofKk(v), the
number of intersections that each vertical segmentv ∈ V k

σj

participates at that recursive level. ComputingKk(v) for
each recursive level is the other source of suboptimality
in [6].

Recall that in invocationIkσ , the algorithm reports inter-
sections among the segments inRk

σj
= V k

σj
∪Sk

σj
for each of

d child slabsσj . Also recall that the segments ofSk
σj

fully
span the slabσj . Thus, if they-coordinate of a horizontal
segmenth ∈ Sk

σj
falls within the range of they-coordinates

of the two endpoints of some vertical segmentv ∈ V k
σj

, then
v and h must intersect. Thus, the problem of computing
the valuesKk(v) reduces to the batched one-dimensional
range counting problem on the sorted listsRk

σj
= Sk

σj
∪V k

σj

treating vertical segments ofV k
σj

as intervals and they-
coordinates of the horizontal segments ofSk

σj
as points.

Ajwani et al [6] present a solution to the range counting
problem that exhibitsO(sortP (N)) I/O complexity. Using
this counting solution at each level of recursion of the paral-
lel distribution sweeping framework results in a suboptimal
I/O complexity of O(sortP (N) logd P ) for all counting
steps. In Section IV we present an improved algorithm
to solve the range counting problem. Our algorithm uses
O((N + K)/PB) I/Os, whereN is the size of the input
to the range counting algorithm andK is the combined
sum of the range counts. We use this algorithm for counting
intersectionsKk(v) to achieve the optimal solution.

In the next section we present solution to the batched 1-
D range counting problem. Next, in Section V we present
our orthogonal line segment intersection reporting algorithm
assuming that there are no heavy segments among the input,
i.e. no segment participates in more thanK ′ intersections.
Finally, we address the problem of splitting heavy segments
into light ones in Section VI.

IV. BATCHED 1-D RANGE COUNTING

Definition 1. Let Q be a set of intervals andP a set of
points on the real line. The1-D range countingproblem
asks to compute for eachq ∈ Q the valuekq, the number
of points inP that fall within the intervalq.

Theorem 1. If the input is given as anx-sorted list of points
and interval endpoints of combined sizeN , the batched 1-
D range counting problem can be solved usingO((N +

K)/PB+logP logd N +d) I/Os in the PEM model, where
K =

∑

q∈Q kq and d = max{2,min{
√

N/P,M/B}}.

To prove the theorem we present a PEM algorithm that
solves the range counting problem within the stated bounds.
Let U := Q ∪ P be the x-sorted input list,|U| = N .
Our counting algorithm ignores the right endpoints of the
intervals and represents each interval by its left endpoint.
For ease of exposition we abuse the notation slightly and
useq to denote both the left endpoint of the interval and the
interval itself. When we need to refer to the right endpoint
of the interval, we useq. (Recall that information aboutq
is stored withq.) Note, that from an input list that contains
both endpoints of each interval, we can generate the list
containing only the left endpoints inO(N/PB) I/Os using
the 2-way distribution operation.

We start by presenting a brief overview of the range
counting algorithm followed by the details of each step.

We annotate each endpointq ∈ Q with scc(q), the number
of points ofP that precedeq in U . Then, the goal of the
counting algorithm is for each endpointq ∈ Q, to compute
and annotateq with scc(q), whereq is the right endpoint of
the intervalq. The number of points that intervalq contains
then equals scc(q) − scc(q) and can be computed from
information stored withq.

We partitionU into x-sorted listsQ andP using 2-way
distribution. Next, we compute the values scc(q) in two
phases. In the first phase we compute the values scc(q) for
all intervalsq that contain at mostdB points. The second
phase processes the remaining intervals in rounds. In each
round, using binary search we compute the values scc(q)
and eliminate the intervals that contain an exponentially in-
creasing number of points. Using an amortization argument
we show that the large number of points contained within
each interval can “pay” for the random accesses required by
the binary search.

Now we present the details of the algorithm.
Computing scc(q). Given thex-sorted listU of points

and interval endpoints, we assign a weight0 to the intervals
and 1 to the points. The value of the prefix sum operation
on these weights defines the correct values scc(q) for each
interval endpointq.

Partitioning U into Q and P . Partitioning ofU into Q
andP is simply a 2-way distribution, where the properties
are defined by whether the element is an interval endpoint
or a point ofP .

Phase 1: Processing intervals that contain up todB
points. For each intervalqj = Q[j] we assign weight
wqj := min{dB,max{1, scc(qj+1) − scc(qj)}}. If qj is
the last endpoint inQ, the weight for qj is defined as
wqj := min{dB,max{1, |Q| − scc(qj)}}. Intuitively, the
weightwqj is equal to the number of points ofP between the
two interval left endpointsqj = Q[j] andqj+1 = Q[j + 1],
up to a maximum ofdB. We use these weights as the input



to the global load balancingoperation to assign intervals
of Q to processors. During the analysis we will show that
this choice of weights ensures that the number of intervals
assigned to each processor and the number of points ofP
that it reads during this phase is at most(N +K)/P + dB.

Let Qi be the set of intervals assigned to processorpi.
Then pi scansQi and for eachq ∈ Qi counts the number
of points that havex-coordinate smaller thanq. Processor
pi accomplishes this by loading pointsP [scc(q)] through
P [scc(q) + dB − 1] into its cache and searching for thex-
coordinate ofq among them. Note, that scc(q) equals to the
index inP of the first point that lies to the right ofq. Thus,
if pi finds thex-coordinate ofq among thedB points,pi
stores scc(q) with q. Else, the intervalq contains more than
dB points and, therefore,q is marked to be processed in
the second phase. At the end of the phase, using the 2-way
distribution, all marked intervals are copied into a contiguous
array Q′ to be used as input for the second phase. When
copying eachq to Q′, pi stores the backpointerj – the index
of q in list Q – with the copy ofq in Q′. This backpointer
will be used in the second phase to quickly findq in the
original list Q to store scc(q).

Phase 2: Processing intervals that contain more than
dB points. This step proceeds inlogd(N/B)−1 rounds. We
maintain the invariant that each interval in the input to each
round r = 1, 2, . . . contains more thandrB points. (Note,
that the first phase ensures that the invariant is satisfied at
the beginning of the first round.) Then it follows that in each
roundr there is a total of at mostKdrB intervals remaining
to be processed. We evenly allocate these intervals among
the processors, using global load balancing operation and
unit weights for each interval. Each processorpi is then
responsible for a set of intervalsQ′

i of size at most K
drPB .

For each endpointq ∈ Q′
i, processorpi searches for the

x-coordinate ofq using binary search among the points
P [scc(q) + drB] throughP [scc(q) + dr+1B − 1]. If the x-
coordinate ofq falls within the range, we store scc(q) with q
in the original listQ (using the backpointerj to quickly find
it). Else,q contains more thandr+1B points and is marked
to be processed in the next round. At the end of the round, all
unmarked intervals are deleted and all listsQ′ are compacted
to occupy contiguous space to be used as the input for the
next round. Note, that any element remains for the next
round only if scc(q) lies beyond index scc(q) + dr+1B, i.e.
q contains more thandr+1B points, therefore, satisfying the
invariant for the next round. Since each interval can contain
at mostN points, afterlogd(N/B)− 1 rounds there will be
no intervals inQ′ remaining to be processed, i.e. counts for
all ranges have been computed.

A. Analysis of batched 1-D range counting

In this section we analyze the I/O complexity of the
algorithm.

Lemma 1. The batched 1-D range counting algorithm takes
O(N/PB + K/PB + d + logP logd N) I/Os, whered =
max{2,min{

√

N/P ,M/B}}.

Proof:
Computing scc(q) and partitioning U . These steps of

the algorithm consists of a constant number of prefix sums,
parallel scans and compaction operations. Thus, it takes
O(N/PB + logP ) I/Os.

Analysis of phase 1:Let processorpi be assigned the set
Qi ⊆ Q of intervals and let it read the setPi ⊆ P of points
during the first phase of the counting algorithm. We show
that the sizes|Qi| and |Pi| are bounded byO(N/P + dB).
Since the elements ofQi andPi are read consecutively, and
since each processor’s cache can fitM ≥ dB elements, once
a point is evicted from a processor’s cache, it is never loaded
again. Thus, the I/O complexity of reading the elements of
Qi andPi will be bounded by|Qi|/B+ |Pi|/B+dB/B =
O(N/PB + d) I/Os.

The crucial part of phase 1 is the selection of the weights
for the global load balancing operation. Let’s take a closer
look at these weights. As mentioned earlier, the weight of
interval represented by the left endpointqj ∈ Q equals to
the number of points betweenqj and the next interval left
endpointqj+1 (up to a maximum ofdB points). The total
weightW =

∑

qj∈Q wqj ≤ ∑

qj∈Q 1+
∑

qj∈Q(scc(qj+1)−
scc(qj)) ≤ |Q| + |P| = N . Then the combined weight of
elements ofQi is Wi = O(W/P +wmax) = O(N/P + dB)
by the global load balancing operation. Since each weight
wqj ≥ 1, it follows that |Qi| ≤ Wi = O(N/P + dB).

To bound|Pi|, letSqj ⊆ Pi be the set of up to the firstdB
points contained within intervalqj ∈ Qi. Let S′

qj ⊆ Sqj be
the set of all points ofSqj that lie between the left endpoints
qj and qj+1 in U . The definition of the weights says that
wqj ≥ |S′

qj |. Then the set of points ofPi that processorpi
reads is equal to

|Pi| =

∣

∣

∣

∣

∣

∣

⋃

qj∈Qi

Sqj

∣

∣

∣

∣

∣

∣

≤
∑

qj∈Qi

|S′
qj |+ dB

≤
∑

qj∈Qi

wqj + dB = O(Wi + dB) = O(N/P + dB)

Analysis of phase 2:Consider roundr. Since according
to the invariant, each intervalq contains more thandrB
points, the size of the input at the beginning of roundr is
|Q′| ≤ K/(drB). Each processorpi gets an equal fraction
of these elements, i.e.|Q′

i| = O(K/(drPB)) elements. The
I/O complexity of the binary search for eachq ∈ Q′

i is
O(log dr+1B

B ) = O((r + 1) log d). Finally, the deletion of
the processed elements and the compaction of the remaining
elements takesO(|Q′

i|/PB+logP ) I/Os. Thus, the parallel
I/O complexity of roundr is O(K(r+1) log d

drPB + logP ) I/Os.



Combining this over all rounds, the total I/O complexity of
the second phase is

logd(N/B)−1
∑

r=1

(
K(r + 1) log d

drPB
+ logP )

≤ K log d

PB





logd(N/B)−1
∑

r=1

r + 1

dr



+ logP logd(N/B)

≤ K log d

PB
· 2d− 1

(d− 1)2
+ logP logd(N/B)

=
K log d

PB
·O

(

1

d

)

+ logP logd(N/B)

= O(K/PB + logP logd(N/B))

Combining the I/O complexities of each part of the
algorithm, concludes the proof of the lemma.

Corollary 1. If P ≤ min{N/(B log2 N), N/B2}, the
batched 1-D range counting problem can be solved in the
PEM model inO(N/PB + K/PB) I/Os, whereK is the
total sum of the range counts.

Proof: If P ≤ N/(B log2 N) thenN/PB ≥ log2 N ≥
logP logd(N/B). Also, sinceP ≤ N/B2, it follows that
√

N/P ≥ B. Then d ≤
√

N/P = N/P√
N/P

≤ N/P
B =

N/PB. The corollary follows.

Corollary 2. If P ≤ min{N/(B logN), N/B2} andM =
BO(1), the batched 1-D range counting problem can be
solved in the PEM model inO(sortP (N) + K/PB) I/Os,
whereK is the total sum of range counts.

Proof: If P ≤ N/(B logN), then log(N/B) ≤
N/PB. And sinced ≤ N/PB (see proof of Corollary 1), it
follows thatO(N/PB+K/PB+d+logP logd(N/B)) =
O(N/PB+K/PB+log(N/B) logd P ) = O( N

PB logd P +
K/PB) = O(sortP (N) + K/PB). The last equality has
been proven in [7] ford = max{2,min{

√

N/P,M/B}}
and under the assumption thatM = BO(1).

B. Batched 1-D range counting on independent inputs

For the distribution sweeping framework, we need to solve
range counting problem on a set of different slabs in parallel.
The next theorem says that we can do it for up tor = O(P )
independent instances.

Theorem 2. LetA1, A2, . . . , Ar ber independent instances
of batched 1-D range counting problems. If eachAi = Qi∪
Pi isx-sorted,r = O(P ) and

∑r
i=1 |Ai| = N , then all these

instances can be solved inO((N+K)/PB+logP logd N+
d) I/Os in the PEM model, whereK =

∑r
i=1

∑

q∈Qi
kq and

d = max{2,min{
√

N/P,M/B}}.

Proof: By replacing the parallel scan and prefix sum
operations of the range counting algorithm with the corre-
sponding segmented versions, we ensure that these opera-
tions still perform withinO(N/PB + logP ) I/Os.

The requirement thatr = O(P ) is equivalent to the
requirement of the global load balancing operation, thus we
can use it to allocate elements of the input listsA1, . . . , Ar

to the processors.
The rest of the operations are performed by processors

sequentially on the set of elements that each one is assigned.
Multiple instances do not change the I/O complexity of the
algorithm, as long as the elements allocated to a single
processor do not come from more than a constant number
of different instances. This last criteria is satisfied by the
properties of the global load balancing operation.

Corollary 3. If P ≤ min{N/(B log2 N), N/B2}, the
batched 1-D range counting problem on up toO(P ) in-
dependent instance of combined sizeN and total range
counts equalK can be solved in the PEM model in
O(N/PB +K/PB) I/Os.

Corollary 4. If P ≤ min{N/(B logN), N/B2}, the
batched 1-D range counting problem on up toO(P ) in-
dependent instance of combined sizeN and total range
counts equalK can be solved in the PEM model in
O(sortP (N) +K/PB) I/Os.

The proofs for these corollaries are similar to the corre-
sponding Corollaries 1 and 2.

V. OPTIMAL ORTHOGONAL L INE SEGMENT

INTERSECTIONREPORTING

In this section we assume that no vertical segment par-
ticipates in more thanK ′ := max{N/P,K/(P logd P )}
intersections.

As mentioned in Section III, to solve the orthogonal line
segment intersection reporting problem, we run the distri-
bution sweeping framework from [6], and computing the
number of intersections,Kk(v), that each vertical segmentv
participates in at invocationIkσ , by using our range counting
algorithm presented in Section IV. There are at mostP slabs
σ at any given recursive level of the parallel distribution
sweeping framework. Thus, we can use Theorem 2 to
efficiently compute the range counting problem on up to
P independent instances. The only remaining task is to
bound the sizes of all these instances of the range counting
problems at thekth level of recursion.

At the kth recursive level, each vertical segment appears
only in one invocation. Thus, the total number of vertical
segments is at mostN . A horizontal segment may appear in
multiple lists Sk

σj
. However, a horizontal segment appears

in Sk
σj

if and only if it participates in at least one inter-
section. LetKk denote the total number of intersection to
be reported at thekth recursive level. Then the total size



of all lists Sk
σj

is at mostKk. The total size of all lists
Rk

σj
= V k

σj
∪ Sk

σj
at the kth recursive level is, therefore,

bounded by
∑

σj
|Rk

σj
| = ∑

σj
|V k

σj
|+∑

σj
|Sk

σj
| ≤ N+Kk.

The total sum of counts is also bounded by the total number
of intersections to be reported at thekth recursive level, that
is, Kk. Therefore, using Corollary 3, the range counting
problem, and, consequently, computing the valuesKk(v)
for each vertical segmentv ∈ V k

σj
on the kth level of

recursion can be performed inO((N + Kk)/PB) I/Os.
By summing this cost over all levels of recursion, we
obtain the I/O complexity of

∑logd P
k=1 (N/PB+Kk/PB) =

O( N
PB logd P + K/PB) = O(sortP (N) + K/PB) for

all counting steps. This matches the cost of the remainder
of the algorithm and, thus, leads to an optimal solution
with O(sortP (N) + K/PB) I/O complexity. The space
complexity of the distribution sweeping framework of [6]
is O(N +K) and remains unchanged.

This proves the following theorem.

Theorem 3. In the PEM model, orthogonal line segment
intersection reporting can be solved inO(sortP (N) +
K/PB) I/Os using O(N + K) space, providedP ≤
min{ N

B log2 N
, N
B2 }.

A careful reader will notice that the maximum number of
processors of this solution to the line segment intersection
reporting problem decreased by a factor ofO(logN) com-
pared to the one presented in [6]. Using Corollary 4 and
the same argument as above, one can easily observe that
the above algorithm achievesO(sortP (N) logd P +K/PB)
I/O complexity for P ≤ min{ N

B logN , N
B2 }, matching the

bounds of Ajwani et al. [6] and, consequently, providing an
alternative solution.

However, the following theorem shows that we can still
achieve the optimalO(sortP (N) +K/PB) I/O complexity
for the same range of processors, at the expense of using
slightly more space. This trade-off between space and scal-
ability was not possible in the previous solution.

Theorem 4. In the PEM model, orthogonal line
segment intersection reporting can be solved in
O(sortP (N) + K/PB) I/Os and O(N logd P + K)
space, provided P ≤ min{ N

B logN , N
B2 } and for

d = max{2,min{
√

N/P,M/B}}.

Proof: The parallel distribution sweeping algorithm
processes each level of recursion in parallel using all proces-
sors, one recursive level at a time. A recursive level doesn’t
depend on the reporting performed at other recursive levels.
Thus, the input listsY k

σ and Rk
σ can be generated for all

recursive levels at the beginning of the algorithm. Then we
run the range counting algorithm as before, but this time on
the lists of all recursive levels at once. The total number
of these lists is stillO(P ), thus, we can use Theorem 2 to
bound the I/O complexity of intersection counting.

Each vertical segment appears at most once at each
recursive level, while each horizontal segment appears in the
input of a slab if it participates in an intersection or has an
endpoint in that slab. Thus, overO(logd P ) recursive levels,
the total size of all lists is at mostO(N logd P+K). Thus, if
P ≤ min{N/(B logN), N/B2} then logN = O(N/PB)
andd = O(N/PB) and by Theorem 2 the I/O complexity
of the counting step is bounded by

O

(

N logd P +K

PB
+ logP logdN + d

)

= O(sortP (N) +K/PB + logN logd P + d)

= O

(

sortP (N) +K/PB +
N

PB
logd P

)

= O(sortP (N) +K/PB)

The space complexity is increased toO(N logd P +K)
for storing all the lists.

In the next section we solve the remaining task, namely,
preprocessing the input splitting heavy segments into a set
of light ones.

VI. D IVIDING LONG SEGMENTS

In this section we describe how to split heavy segments,
i.e. the segments that participate in more thanK ′ :=
max{N/P,K/(P logd P )} intersections into a set of light
ones. To be consistent with our definitions of slabs for the
distribution sweeping, we present a method of splitting the
horizontal segments. The vertical segments can be processed
analogously.

We start by counting the number of intersections each
horizontal segment is involved in. An algorithm to perform
this inO(sortP (N)) I/Os has been presented in [6]. Using a
2-way distribution operation, which takesO(N/PB) I/Os,
we extract the listHL of heavy horizontal segments, and
in the remainder of this section we consider only these
horizontal segments. For each segmenth ∈ HL we generate
a list Lh of x-coordinates such that the segments induced
by splitting h at thesex-coordinates participate inO(K ′)
intersections each. Thus, each pair of adjacent entries in
each Lh defines a new segment that participates in at
most O(K ′) intersections. Note, that the total number of
generated segments is at mostK/K ′ ≤ P logd P = O(N),
becauseP ≤ N/ logN . Thus, the total size of generated
lists Lh is bounded byO(N), i.e. the number of newly
generated segments is still linear with the number of original
segments. It is important to note that maintaining the the
entries of each listLh in order and in contiguous space
during generation would add unnecessary complications to
the algorithm. Instead, we generate these entries as tuples
(h, xi) and construct the listsLh at the end of the algo-
rithm by sorting the set of tuples lexicographically. Since,
∑

h∈HL
|Lh| = O(N), this sorting step, which is performed



only once, does not affect the overall I/O complexity of the
algorithm.

We generate the entries ofLh for all h ∈ HL by adapting
theO(sortP (N+K)) solution described in [6]. In particular,
we defer the generation of entries ofLh to leaf invocations.
Thus, at each non-leaf invocationIkσ we only generate
the input listsY k+1

σj
for the child invocationsIk+1

σj
. We

will show that our approach for generating the child lists
guarantees that at a leaf invocationIkσ we simply need to
cut each horizontal segmenth ∈ Y k

σ at the slab boundaries
of σ. Since the combined size of listsLh is linear, the
combined size of the input listsY k

σ at each recursive level are
also bounded byO(N), resulting in optimalO(sortP (N))
solution overO(logd P ) recursive levels.

Let us describe the algorithm for generating child lists
Y k+1
σj

. Given a listY k
σ , any vertical segment that lies within

slab σj is added to the listY k+1
σj

. Consider a horizontal
segmenth = (xl, xr, y) ∈ Y k

σ . Segmenth is added to
the child list Y k+1

σj
if σj contains one of its endpoints.

Now, assumeh fully spans some slabσj . Let x(σl
j) and

x(σr
j ) denote thex-coordinates of the left and the right

boundaries ofσj . Consider the following subsegments of
h: h1 = (xl, x(σ

l
j), y) andh2 = (xl, x(σ

r
j ), y). Let w(h1)

andw(h2) be the number of vertical segments thath1 and
h2 intersect. Note, that if⌊w(h1)/K

′⌋ < ⌊w(h2)/K
′⌋, we

would need to cuth within the slabσj , that is, add toLh

somex-coordinate which falls within the range of slabσj .
Thus, we would like to copyh to Y k+1

σj
if this condition

is satisfied. Then, any horizontal segment belongs to the
input list Y k

σ of a leaf invocationIkσ , either because it has
an endpoint withinσ or because it should be cut withinσ.
However, each leaf invocation contains at mostN/P vertical
segments, i.e., each horizontal segment intersects at most
N/P vertical segments within the leaf slabσ. Thus, it does
not matter where we cuth within σ. So we can cuth at
the boundaries ofσ by creating the tuples(h, x(σl)) and
(h, x(σr)).

Unfortunately, the distribution sweeping framework can-
not computew(h1) andw(h2) for each horizontal segment
until it reaches leaf invocations. Thus, we cannot make
a decision about the membership ofh in the child lists
in invocation Ikσ . However, as we show below, we can
compute these values if both endpoints ofh1 andh2 coincide
with boundaries of some slabs (not necessarily at the same
invocation level). To enforce this requirement we split each
horizontal segmenth into two segments at the slab boundary
bh that h crosses in the earliest possible invocation. We
say the two segments areanchoredat bh. The rest of the
algorithm proceeds treating the two segments as independent
segments and counting intersection from the anchor pointbh,
rather than the left endpoint of the segment.

Now we formally describe the details of the algorithm. We
start by adding the left and right endpoint of each segment

anchorbh

hl hr

h

Figure 3. An example of anchoring segmenth at bh.

h = (xl, xr, y) to Lh, that is, we generate tuples(h, xl) and
(h, xr).

At each invocationIkσ consider a horizontal segmenth ∈
Y k
σ . If h is completely contained within a child slabσj of

σ, we addh to Y k+1
σj

without any further processing.
If h has not been anchored yet and intersects at least

one slab boundary among the child slabs ofσ, we add the
leftmost such boundarybh to Lh (by generating the tuple
(h, x(bh))) and split h into segmentshl = (xl, x(bh), y)
and hr = (x(bh), xr , y). We initialize the weight of each
of the two segments at0 and from now on maintain the
two weights separately. Note that sincebh is the leftmost
slab boundary thath intersects,hl is completely contained
within the child slabσj , whose right boundary isbh. Hence,
we addhl to Y k+1

σj
. We processhr in the same way as we

process an anchored segmenth ∈ Y k
σ , as discussed next.

If h is an anchored segment, assume w.l.o.g. that it is left-
anchored, that is, its left endpoint isbh (the right-anchored
segments are processed symmetrically). Letw(h) denote the
weight of h and letσl, σl+1, . . . , σr be the child slabs of
σ completely spanned byh. For l ≤ j ≤ r, let wj be
the number of intersectionsh has in slabσj . (The original
description of generating the listsY k+1

σj
in [6] computes

the valueswj , but is only interested in whetherwj > 0 and,
therefore, discards them. For our purposes here, we maintain
these values.) Forl ≤ j ≤ r, let w′

j = w(h) +
∑j

k=l wk

and definew′
l−1 = w(h). We add segmenth to Y k+1

σj
, for

l ≤ j ≤ r, if ⌊w′
j−1/K

′⌋ < ⌊w′
j/K

′⌋. In this case, the copy
of h in Y k+1

σj
receives weightw′

j−1. If the right endpoint
of h is interior to slabσr+1, we also addh to Y k+1

σr+1
, with

weightw′
r.

Let us analyze the I/O complexity of generating the lists
Y k+1
σj

. A segmenth is added to listY k
σj

if and only if one of
its endpoints is contained inσj or h must be split withinσ.
The last condition is equivalent to one of the entries ofLh

lying within the range spanned by slabσj . Thus, the total
size of the listsY k

σ at each invocation levelk is bounded
by

∑

σ |Y k
σ | = O(N +

∑

h∈HL
|Lh|) = O(N). Then, by

Lemma 1 of [6], the I/O complexity of generating the lists
Y k
σ at each level of recursion isO(N/PB). Over logd P

levels of recursion, the total I/O complexity of generating



Lh adds up toO( N
PB logd P ) = O(sortP (N)).

As mentioned before, at the leaf invocationsIkσ we
generate tuples(h, x(σl)) and (h, x(σr)), which requires
a parallel scan of the listsY k

σ . Since the combined size of
these lists is linear, this step takesO(N/PB) I/Os.

Finally, sorting the tuples to generate the listsLh takes
O(sortP (N)) I/Os.

Combining the I/O complexities of each step and repeat-
ing the process for vertical segments proves the following
theorem.

Theorem 5. If P ≤ min{N/B2, N/ logN}, a list
of N horizontal and vertical segments can be prepro-
cessed in the PEM model inO(sortP (N)) I/Os, such
that each segment that participates in more thanK ′ :=
max{N/P,K/(P logd P )} intersections is divided into
smaller segments and no segment in the output participates
in more thanK ′ intersections.
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APPENDIX A.
GLOBAL LOAD BALANCING

Let A1, A2, . . . , Ar be arrays each of whose elementse
has a positive weightwe. Assume further thatr ≤ P and
∑r

i=1 |Ai| = N , and letWi =
∑

e∈Ai
we be the total weight

of the elements in arrayAi, W =
∑r

i=1 Wi, andwmax =
max1≤i≤r maxe∈Ai

we. Theglobal load balancingproblem
is to assign contiguouschunksof arraysA1, A2, . . . , Ar to
processors so that each processor receivesO(1) chunks and
the total weight of the elements assigned to each processor
is O(W/P + wmax). In Section II, we claimed that this
operation can be implemented usingO(N/PB+logP ) I/Os
in the PEM model and gave a sketch of the algorithm. Here
we provide the details.

Without loss of generality, we also assume that every array
Ai is aligned at block boundaries and its size is a multiple of
B. If that is not the case, we can pad each array with dummy
entries of weight0 at the end and remove the padding after
the completion of the load balancing procedure. Note that
the padding does not asymptotically increase the total size
of the arrays because the padding is at mostB−1 elements
for each array,r(B− 1) ≤ P (B− 1) ≤ N elements in total
becauseP ≤ N/B.

First we apply a prefix sum operation to the weights of
the elements in each arrayAi. This can be implemented
using a single “segmented” prefix sum operation applied
to the concatenationA of arrays A1, A2, . . . , Ar, which
does not sum across the boundary of two consecutive arrays
Ai and Ai+1. Thus, this step takesO(N/PB + logP )
I/Os. Next we divideA into P chunks of size⌈N/P ⌉
and assign one chunk to each processor. This can be done
using simple index arithmetic onA. Each processor inspects
every elemente in its assigned chunk and marks it if either
e is the first element of an arrayAi or the prefix sums
We and We′ of e and its predecessore′ in Ai satisfy
⌊PWe′/W ⌋ < ⌊PWe/W ⌋. Next we apply a compaction
operation toA to obtain the list of marked elements, each
annotated with the arrayAi it belongs to and its position
in Ai. These marked elements are the start elements of
the chunks we wanted to construct, and we assign two
consecutive chunks to each processor. The I/O complexity
of this procedure is easily seen to beO(N/PB + logP ),
as it involves a prefix sum and a compaction operation, plus
sequential processing of⌈N/PB⌉ blocks per processor, and
one access to two consecutive elements per processor in the
array of marked elements. The constructed chunks have the
desired properties.

• Since the first element of every arrayAi is marked,
every chunk contains elements from exactly one array
Ai.

• The number of chunks is at most2P , that is, by
assigning two chunks to each processor, we do assign
all chunks to processors. To see this, observe that the

number of marked elements per arrayAi is at most
1+ ⌊WiP/W ⌋, which implies that the total number of
marked elements, that is, the total number of chunks is
at mostr + P ≤ 2P .

• Every chunk has total weight at mostW/P + wmax.
To see this, consider a chunk with first elemente and
last elemente′, and letWe andWe′ denote their prefix
sums. Then⌊PWe/W ⌋ = ⌊PWe′/W ⌋, that is, the total
weight of the elements in the chunk, excludinge, is at
mostW/P . Sincee has weight at mostwmax, the total
weight of the chunk is at mostW/P + wmax.


