I/O-optimal Algorithms for Orthogonal Problems for Privat e-Cache Chip
Multiprocessors

Deepak Ajwani
MADALGO
Department of Computer Science
University of Aarhus
Aarhus, Denmark
ajwani@madalgo.au.dk

Aarhus,

Abstract—The parallel external memory (PEM) model has
been used as a basis for the design and analysis of a wide range
of algorithms for the private-cache multi-core architectures.
Recently a parallel version of the distribution sweeping fame-
work was introduced to efficiently solve a number of orthogoral
geometric problems in the PEM model. In this paper we
improve the framework to the optimal O(sortp(N)+ K/PB)
1/0s, where P is the number of cores/processors,B is the
number of elements that fit into a cache-line,N and K are
the sizes of the input and output, respectively, angortp(N)
denotes the 1/0 complexity of sortingV items on a P-processor
PEM model.

We achieve this with a new one-dimensional batched range
counting algorithm on a sorted list of ranges and points that
achievesO((N + K)/PB) 1/0 complexity, where K is the
sum of counts of all the ranges. The key to achieving efficient
load balancing among the processors for this problem is a new
method to count the output without enumerating it, which
might be of independent interest.

Keywords-parallel external memory, PEM, multicore algo-
rithms, computational geometry, parallel distribution sweeping

I. INTRODUCTION

Nodari Sitchinava
MADALGO
Department of Computer Science
University of Aarhus

Norbert Zeh
Faculty of Computer Science
Dalhousie University
Halifax, CANADA

Denmark nzeh@cs.dal.ca

nodari@madalgo.au.dk

lcru || |cpu?d CPU
M/B MB | *°* M/B
[[|Gache[]| 1], Cache|| Cachel[]| |
|
(LTI shared memorg FT[[TI[]IT]] te
Figure 1. The PEM model

algorithms that minimize access to shared memory and
consequently, optimize the usage of private caches.

In this paper we improve the results of a recent paper [6]
and provide techniques to achieve optimal cache utilipatio
for output-sensitive geometric problems in the parallel ex
ternal memory model — a private-cache CMP model.

A. Model of Computation and Previous Work

In this paper we study geometric algorithms in tregallel
external memoryPEM) model of Arge et al. [7]. The model

Multicores are becoming a norm among the commodity!S @ parallel extension of thexternal memorymodel of
hardware. The computers of an average user today contafig9arwal and Vitter [8] (see Figure 1). It consists &f

two to four cores. But recently Intel announced a 48-

processors, each with a private cache of siZefor each

core prototype [1] and the number is projected to reactProcessor. To perform any operation on data, a processor
hundreds of cores in the near future [2]-[4]. Thus, theremPSt first load the data |nto_|ts cache. The caches are
is a need for algorithmic techniques to fully take advantagd!vate to the processors, that is, each processor cansacces

of the parallelism associated with such a large number oPNlY its own cache. The inter-processor communication is
processing cores [5]. conducted via processors writing to and reading from a

To hide the latency of accessing main memory moderrshared memoryThe data is transferred between the memory

multicores implement low-latency caches which are privaté®nd caches in blocks @ elements. During onput-output
for each processor. This architecture became commonl§/©) operation, each processor can transfer a single such
know as private-cache chip multiprocessor (CMP). To fully lock of elements between shared memory and its cache.

take advantage of such architecture, there is a need fornus, during a single parallel I/O operation upfoblocks
can be transferred between the shared memory and’the

MADALGO is the Center for Massive Data Algorithmics, a cent# caches. One of the metrics of the PEM modeparallel

the Danish National Research Foundation

The third author was supported in part by the Natural Scienmed
Engineering Research Council of Canada and the CanadarBesgaairs
programme.

I/0 complexity which counts the number of parallel I/O
operations performed during execution of an algorithmt Jus
as in the PRAM model, different assumptions can be made

when multiple processors attempt to read or write from theB. New Results
same block. In this paper we allow any humber of processors
concurrently reading the same block, but disallow conaurre
writes.

The PEM model is the simplest model of current multi-

In this paper we improve the results of Ajwani et al. [6]
and present a solution to the line segment intersection re-
porting problem that exhibit® (sort p(N)+ K/ P B) parallel

I/0 complexity, which is asymptotically optimal in the size

coreli’:\rfh|tecqtlrjlrei, f°°“5”.‘9 on thefchallengelslof C(I)_mg]lm of both the input and the output. Our main results are stated
parallelism with the requirement for spatial locality for ; +rcorems 3 and 4.

efficient use of caches. A number of problems have been To achieve this bound we develop a new technique to

studied in the PEM ”_‘Ode'-_ Arge et al. [7] study a r“."‘nbersolve the one-dimensional batched range counting problem
of funqlamental comblnatorlal problems such as pre_f|x SUMhn a sorted input of ranges and points, which might be of in-
operation and sorting. In another paper [9], solutions tOdependent interest. Our algorithm (presented in Sectign IV

fur;:lamen;al pr;)bltehms on glrtapus arebpresenéfq. din th exhibitsO((N + K)/PB) 1/0 complexity, whereK is the
numboer ot ofher resutts nave been obtained I e ., o o) the range counts. This is an improvement over
more complicated cache-oblivious and resource Ob“V'uo%revious best known result 6f(sort »(N)+ K/ PB). While
multicore models. In [10], Bender et al. study concurrentthe equivalent bound 0B ((N + K)/B) in the sequential
searching and updating of cache-oblivious B-trees by mul-

. . _ external memory model is not a very exciting result for a
tiple processors.. In [11]-[16] several different muIUepr counting problem because the count can be performed by
models are considered and cache- and processor-obllwo% umerating the whole output, the uniqueness of our result

algorithms are presented for fundamental combmatonalm the PEM model lies in the fact that /P, the size of

gralt/lph,tand m?ltnxﬁaseq p:obllen;s. tudv the distributi the output that each processor may access, might be smaller
ost recently, Awani et al. [6] study the distribution han the number of points falling within some range. Thus, to

sweeping tech.nique [17] in th? PEM model. They presen chieve theD ((V + K)/PB) I/0O complexity, the processor
a parallel version of the tephmque that has k_)e_en VEIY UG st be able to count without enumerating the whole output.
cessful at solving geometric problems 1/0-efficiently ire th

: . Throughout this paper, we will assume that the geometric
sequential external memory model [17]. Using the parallel , . : i

o . objects contain only a constant number of endpoints and

distribution sweeping the authors show how to solve a num- X : . .

) . . each endpoint stores information about the other endpoints

ber of two-dimensional orthogonal geometric problemshsuc .

as orthogonal line seament intersection reporting. o in one of its fields. We will also assume, unless stated other-
gona gment on reporting, oY 4o thatp < min{N/B?, N/(Blog N)} andM — BOW),
range reporting and reporting all pairs of overlapping rect

. o . i < 2 = BO)
angles in the PEM model. What distinguishes their pape;rhe assumption®” < N/B* and M = B were stated

. .) : .—7In [7] and are required to prove the sorting bounds, while
from other results in multicore models is that their solnto P < N/(Blog N) is used in [6] to prove bounds for the
to the problems are output-sensitive, which means that the. — & P

running time and the I/O complexity depend on the size O§|strlbut|on sweeping algorithms.

the output reported. The difficulty with the output senyiv

in the parallel setting lies in partitioning the input among

the processors so that each processor reads roughly equalln this section, we review the primitives that we use

fractions of the input, while producing equal fractions of repeatedly throughout this paper. These primitives haes be

the output. The authors present techniques to compute thgitially described in [7] and [6] or are simple extensions

size of the output and balance the work based on thisthereof.

information. However, this step for computing the size &fth Prefix sum and compaction.Given an arrayA[l.. N],

output seems to be the bottleneck for achieving the optimathe prefix sumproblem is to compute an arra§[1..N]

I/0 complexity for the geometric problems they consideredsuch thatS[i] = Z;ZIA[]']. Given a second boolean

They describe two different solutions, one that is I/O-oti array M|[1..N], the compactionproblem is to arrange

in the size of the input and the other that is optimal in theall elementsA[i] such that)M[i] = true consecutively at

size of the output, but neither achieves optimality in boththe beginning ofA without changing their relative order.

parameters. PEM algorithms for these problems with 1/0O complexity
While output-sensitive algorithms haven't been studiedO(N/PB + log P) = O(N/PB) are presented in [7] (also

before [6], there is related work in the sequential externalee [22]).

memory [17] and cache-oblivous [18], [19] models, as well Multi-way distribution. Given an array ofN elements

as in the PRAM model [20], [21]. However, the sequentialwith each element annotated with one dproperties, the

external memory and cache-oblivious solutions lack thei-way distribution problemasks to generatd contiguous

requirement to load balance the work among processorgrrays, each consisting of elements containing the same

while the PRAM solutions rely on the fine-grained accessproperty. A distribution isstable if the relative order of

to the shared memory. elements in the resulting arrays is the same as in the input

II. ToOOLS AND NOTATIONS

array. The stablel-way distribution problem can be solved
in the PEM model inO(N/PB) 1/Os for any constand.

The solution is a simple application of parallel scan
and compaction: each processor scans an equal fraction of
the input and distributes its elements amomdifferent
lists. Finally, for each ofd properties, the processors run
a compaction operation on the generated arrays of that
property. Sinced is a constant, the compaction operations
run in O(N/PB +log P) = O(N/PB) 1/Os.

Sorting. Arge et al [7] show that an array df elements
can be sorted in the PEM model @(55 log /5 3) 1/Os.

We will use sortp(NN) to denote the I/O complexity of
sorting N elements.

Global load balancing. Let Ay, A>,..., A, be a col-
lection of arrays withr = O(P) and 377, |A;| = N, Figure 2. Invocation/¥ of the distribution sweeping framework. Given
and assume each elementhas a pOSitiVé Weightum. Let thgflbove segmelrgtfl, the lists geknf{ated at invogitﬁlbmok as follows:

7 - T Yo = {ha}, Yoo o = {1}, Yo, = {hs}, Y5,7" = {v2, ha, h3};
Wmax = MaXy We, Wj = ZzeAj Wy ar.]dW - ,ijl Wi. A RE_ = {v1,h2}, RE = {v2}. Note that the intersection betweén and
global load balancingoperation assignsontiguoussubar- ,,’is reported at thearentinvocation of % sinceh, spans the whole slab
rays of Ay, A, ..., A, to processors so that onlye@nstant o = uj_, 05, it belongs toY*~! and does not belong fi5*, therefore, is

number of subarrays are assigned to each processor and thw an input to invocatiod ;. Also note that althouglh> spansos, it does

total weight of the elements assigned to any processor i%?f p;‘:('jc'gg‘tnesgal?gnw;eri;gf tion i and, therefore, it does not appear in

O(W/P + wmax). This operation can be implemented by °* Tes

running a constant number of prefix sum and compaction

operations and, hence, tak€g N/PB) 1/0Os. The details

of the algorithm can be found in [6] but for the sake of 5, (for somel < j < d). Formally, |etE§j denote they-

completeness we reproduce them in Appendix A. sorted list of horizontal segments ¥* with an endpoint
in o;, Si the y-sorted list of horizontal segments i)

I1l. PARALLEL DISTRIBUTION SWEEPING FRAMEWORK spanningo; and with an intersection im;, and V(,’j_ the

y-sorted list of vertical segment endpoints¥ff contained

in o;. For each child slalr; the solution constructs g-

istRk .— gk ke i i
Parallel distribution sweeping recursively divides thesorted listit;, := S5, UVy;, reports all intersections between

plane into vertical slabs, starting with the entire plane assegmehts.an;j, and then recurses on each child invocation
one slab and in each recursive step dividing a given slals, = With inputY;»*' := EZ UV;". An example of the lists
into d := max{2, min{y/N/P, M/B}} child slabs; refer generated at invocatioff’ is illustrated in Figure 2.
to Figure 2. This division is chosen so that each slab At every leaf invocation/” all intersections between the
at a given level of recursion contains roughly the sameelements inY* are found using sequential I/O-efficient
number of objects (e.g., horizontal segment endpoints antechniques, while carefully balancing the work among pro-
vertical segments). The lowest level of recursion dividescessors. (For details, see [6].)
the plane intoP slabs, each containin®(N/P) input The suboptimality of the solution of Ajwani et al. [6]
elements. Viewing the recursion as a rooted tree definearises from two challenges, which in turn stem from the
leaf invocations and children of a non-leaf invocation. Anrequirement to balance the load of reporting the intereasti
invocation on slatr at thek*® recursive level is denoted as among the processors.
I, All invocations at the same recursive level are processed The first challenge arises from the fact that the reporting
in parallel. phase of the line segment intersection reporting algorithm
Each invocationI* receives as input a-sorted list in [6] requires that no vertical segment participates in
Y* containing horizontal segments and vertical segmenmore thanK’ := max{N/B? K/(Plog, P)} intersections.
endpoints. The root invocatiof). contains all horizontal Call a segmenheavyif it participates in more thank”’
segments and vertical segment endpoints of the input aniditersections, andight otherwise. The authors address this
Yy: is generated by sorting the input by thecoordinate. requirement by splitting each heavy segment into a set
For a non-leaf invocatiod?, let 7X+1 1k+1 11 de- of light ones right before reporting intersections at each
note its child invocations. In processing, we report all recursive level. Their solution requirg3(sortp(N)) 1/0s
intersections between the vertical segmentssirand the at each recursive level, which over all recursive levelssadd
portions of horizontal segments spanning some child slalup to the suboptimaD(sortp(N) log,; P) I/O complexity. In

k+1 k+1 k+1 k+1
I I I 17

hy

U2

hs

In this section we review the parallel distribution sweepin
framework of Ajwani et al. [6].

Section VI we present a different approach to transformingK’)/PB + log P log,; N +d) 1/0Os in the PEM model, where
heavy segments into the set of light ones. In particular, wek' = 3, k; and d = max{2, min{\/N/P, M/B}}.

divide heavy vertical segments into light ones as a prepro-
cessing step to the whole intersection reporting algorithm . o
This preprocessing step takéXsortp(N)) 1/Os which is solves the range counting problem within the stated bounds.

within the bounds of an optimal solution for the line segmentl(‘)et u ::t'Q Y IP bti th_e :c-sortet(:] |npu:]tllst,(|ju| :t N]; th
intersection reporting problem. ur counting algorithm ignores the right endpoints of the

) . intervals and represents each interval by its left endpoint

The second challenge arises from the requirement t?: o ; .
balance the work of reporting intersections at each reeersi or ease of exposition we abuse.the notapon slightly and
useq to denote both the left endpoint of the interval and the

level , Whlgh n t“”.‘ requires the knowledge Bl (v), tr;ce interval itself. When we need to refer to the right endpoint
number of intersections that each vertical segmeatV* . _ . .
73 of the interval, we usg. (Recall that information about

participates at that recursive level. Computing:(v) for is stored withg.) Note, that from an input list that contains

each recursive level is the other source of suboptimalityboth endpoints of each interval, we can generate the list

in [6]. g, L .
I — . . containing only the left endpoints i@(N/PB) 1/0Os using
Recall that in invocation;, the algorithm reports inter- 2-way distribution operation.

sections among the segmentsiifi. = V¥ US* for each of h . :
J child slab Al Il th]h SCNAE) ull We start by presenting a brief overview of the range
child slabsa;. Also recall that the segments 60{7: ully counting algorithm followed by the details of each step.

zgag]gr]]% Slagzj ' f-la—lrlléjs’. t':].;h?hyéic;?]rdéngfhot?og?J.'ﬁg?;gl We annotate each endpoint Q with scqg), the number
fgh = o V\;' !) gl g-coordl N of points of P that precede; in ¢. Then, the goal of the
of the two endpoints of some vertical segmerg V;,’, then counting algorithm is for each endpoigte Q, to compute

Uh andlh mlu{st mterzect. Thusr,] ths prr(])btljem Ofdf:omplft'ngand annotatg with scqq), whereg is the right endpoint of
the valuesK (v) reduces to the batched one- |menS|onaL[he intervalg. The number of points that intervalcontains

. ok ok "
range counting problem on the sorted I|.<R§j =55, UV, then equals s¢g) — scdq) and can be computed from

treatm_g vertical segm_ents df’fj as intervals ano_l the- information stored withy.
coordinates of the horizontal segments&ﬁj as points. We partition/ into z-sorted listsQ and P using 2-way
Ajwani et al [6] present a solution to the range countinggistribution. Next, we compute the values &fcin two
problem that exhibit<(sortp(N)) I/O complexity. Using phases. In the first phase we compute the valuegséor
this counting solution at each level of recursion of the para || intervals ¢ that contain at mosiB points. The second
lel distribution sweeping framework results in a suboptima phase processes the remaining intervals in rounds. In each
/O complexity of O(sortp(N)log, P) for all counting yound, using binary search we compute the valuesgcc
steps. In Section IV we present an improved algorithmgng eliminate the intervals that contain an exponentialy i
to solve the range counting problem. Our algorithm usegyeasing number of points. Using an amortization argument
O((N + K)/PB) 1/Os, whereN is the size of the input e show that the large number of points contained within
to the range counting algorithm anli is the combined gach interval can “pay” for the random accesses required by
sum of the range counts. We use this algorithm for countingne binary search.
intersectionsK(v) to achieve the optimal solution. Now we present the details of the algorithm.
In the next section we present solution to the batched 1- Computing scqq). Given thez-sorted listi/ of points
D range counting problem. Next, in Section V we presentang interval endpoints, we assign a weigb the intervals
our orthogonal line segment intersection reporting atBoni and 1 to the points. The value of the prefix sum operation

assuming that there are no heavy segments among the inpyfy these weights defines the correct valueggctor each
i.e. no segment participates in more thAH intersections. nterval endpoin.

Finally, we address the problem of splitting heavy segments Partitioning / into Q and P. Partitioning oft/ into O

into light ones in Section VI. and P is simply a 2-way distribution, where the properties

are defined by whether the element is an interval endpoint
IV. BATCHED 1-D RANGE COUNTING or a point of P.

Phase 1: Processing intervals that contain up talB
points. For each intervalg; = Q[j] we assign weight

To prove the theorem we present a PEM algorithm that

Definition 1. Let Q be a set of intervals an® a set of
points on the real line. Thd-D range countingoroblem

asks to compute for eaghe Q the valuek,, the number ﬁ’]‘b‘ I::t mind{dB’tm.aX{l’tﬁcqqﬂ'fl)ht_fscc(qﬂ'.)}}d Iff qu IS
of points inP that fall within the intervalg. e last endpoint inQ, the weight forg; is defined as

wy, = min{dB, max{1,|Q| — scdg;)}}. Intuitively, the
Theorem 1. If the input is given as am-sorted list of points weightw,; is equal to the number of points &fbetween the
and interval endpoints of combined si?g the batched 1- two interval left endpointg; = Q[j] andg;+1 = Q[j + 1],

D range counting problem can be solved usiOgd(N + up to a maximum oflB. We use these weights as the input

to the global load balancingoperation to assign intervals Lemma 1. The batched 1-D range counting algorithm takes

of Q to processors. During the analysis we will show thatO(N/PB + K/PB + d + log Plog, N) 1/0s, whered =

this choice of weights ensures that the number of intervalsnax{2, min{\/N/P, M/B}}.

assigned to each processor and the number of poinf® of

that it reads during this phase is at m¢at+ K)/P + dB.
Let Q; be the set of intervals assigned to procegsor

Thenp; scansQ; and for eachy € Q; counts the number

Proof:

Computing scdg) and partitioning . These steps of
the algorithm consists of a constant number of prefix sums,
of points that haver-coordinate smaller thag. Processor parallel scans and compaction operations. Thus, it takes
p; accomplishes this by loading poinB[scdq)] through O(N/PB_+1OgP) 1/Os. _

P[scdq) + dB — 1] into its cache and searching for the Analy5|s_of phase 1let processop; be assigned th_e set
coordinate ofj among them. Note, that s@@ equals to the <: & Q Of intervals and let it read the sg% C 7 of points
index inP of the first point that lies to the right af. Thus, ~ during the first phase of the counting algorithm. We show
if p; finds thez-coordinate ofg among thedB points,p; that the sizesQ;| and|P;| are bounded b)(N/P + dB).
stores scf) with ¢. Else, the interval contains more than Since the elements a; andP; are read consecutively, and
dB points and, thereforey is marked to be processed in SiNCe each processor's cache caMit> d3 elements, once
the second phase. At the end of the phase, using the 2-w§"yp9'nt is evicted from a proce_ssor’s cache, it is never Idade
distribution, all marked intervals are copied into a contigs ~ 29@in. Thus, the I/O complexity of reading the elements of
array Q' to be used as input for the second phase. Wher: @ndP; will be bounded by Q;|/B +|P:|/B+dB/B =
copying eachy to @', p; stores the backpointgr— the index O(N/PB +d) l/Os.

of ¢ in list Q — with the copy ofq in Q'. This backpointer The crucial part of phase 1 is the selection of the weights
will be used in the second phase to quickly fipdn the for the global load balancing operation. Let's take a closer
original list Q to store scg). look at these weights. As mentioned earlier, the weight of

Phase 2: Processing intervals that contain more than interval represented by the left endpoipt € Q equals to
dB points. This step proceeds lng,(N/B)—1 rounds. We the nu_mber of points betwgeg and the next interval left
maintain the invariant that each interval in the input toreac €ndpointg;; (up to a maximum ofiB points). The total
roundr = 1,2,... contains more thaa” B points. (Note, WeIGhtW =5 owgy, <3, col+d., co(SCdg;t1)—
that the first phase ensures that the invariant is satisfied &d4;)) < |Q| + [P| = N. Then the combined weight of
the beginning of the first round.) Then it follows that in each€lements ofQ; is W; = O(W/P + wmax) = O(N/P +dB)
roundr there is a total of at mostX> intervals remaining by the global load balancing operation. Since each weight
to be processed. We evenly allocate these intervals amorig; = 1. it follows that |Q;| < W; = O(N/P + dB).
the processors, using global load balancing operation and To boundP;|, letS,; C P; be the set of up to the firgl3
unit weights for each interval. Each procesggris then points contained within interval; € Q;. Let S, C S, be
responsible for a set of interva@g of size at mostﬁ_ the set of all points Oqu that lie between the left endpoints
For each endpoiny € Q/, processorp; searches for the ¢; andg;41 in U. The definition of the weights says that
z-coordinate ofg using binary search among the points wg; > |S; |- Then the set of points oP; that processop;
P[scdq) + d"B] throughP[scdq) + d’+'B — 1]. If the z- reads is equal to
coordinate of falls within the range, we store s@ with ¢
in the original list@ (using the backpointerto quickly find
it). Else, ¢ contains more thad”" !B points and is marked
to be processed in the next round. At the end of the round, all [Pil = U S
unmarked intervals are deleted and all lig¥sare compacted
to occupy contiguous space to be used as the input for the < Z wg; +dB = O(W; +dB) = O(N/P + dB)
next round. Note, that any element remains for the next 4G €Qi
round only if sc¢g) lies beyond index s¢q) + d" ™1 B, i.e.
¢ contains more tha”+! B points, therefore, satisfying the ~ Analysis of phase 2:Consider round-. Since according
invariant for the next round. Since each interval can contai t0 the invariant, each intervaj contains more than"B
at mostN points, afterlog,(N/B) — 1 rounds there will be Points, the size of the input at the beginning of rount
no intervals inQ’ remaining to be processed, i.e. counts for|Q'| < K/(d"B). Each processop; gets an equal fraction

< > I8 |+dB

q;€9Q; q; €Q;

all ranges have been Computed' of these elementS, |¢Q,/L| = O(K/(dTPB)) elements. The
I/0 complexity of the binary search for eache Q) is
A. Analysis of batched 1-D range counting O(log ©2B) = O((r + 1) logd). Finally, the deletion of

the processed elements and the compaction of the remaining
elements take®(|Q.|/PB+log P) 1/0s. Thus, the parallel
I/0 complexity of roundr is O(% + log P) 1/Os.

In this section we analyze the I/O complexity of the
algorithm.

Combining this over all rounds, the total I/O complexity of Proof: By replacing the parallel scan and prefix sum
the second phase is operations of the range counting algorithm with the corre-
sponding segmented versions, we ensure that these opera-
tions still perform withinO(N/PB + log P) 1/0Os.

log,;(N/B)—
gd(z/:) 1(K(T+1)10gd log P) The requirement that = O(P) is equivalent to the
d"PB & requirement of the global load balancing operation, thus we
r=1 . . .
can use it to allocate elements of the input lidts ..., A,
. Klogd losa (/B 4 4 log Plog(N/B to the processors.
- PB Zl dr +log Plog,(N/B) The rest of the operations are performed by processors
"~ sequentially on the set of elements that each one is assigned
< Klogd = 2d—1 +log Plog,(N/B) Multiple instances do not change the 1/0 complexity of the
PB (d—1) algorithm, as long as the elements allocated to a single
Klogd 1 processor do not come from more than a constant number
= NON log Plog,(N/B :) . o o
PB (d) +log Plog,(N/B) of different instances. This last criteria is satisfied bg th
= O(K/PB +log Plog,(N/B)) properties of the global load balancing operation. =

Corollary 3. If P < min{N/(Blog? N), N/B?}, the
batched 1-D range counting problem on up @(P) in-
dependent instance of combined si¥e and total range
counts equalK can be solved in the PEM model in
Corollary 1. If P < min{N/(Blog’ N),N/B?}, the O(N/PB+ K/PB) l/Os.
batched 1-D_range counting problem can be sol_/ed in theCoroIIary 4. If P < min{N/(BlogN),N/B2}, the
E)'tzal\l/lsrl?r%dg; ;E(e)(r{avr{é;Bc:uftéPB) VOs, whereX is the batched 1-D range counting problem on up @(P) in-
' dependent instance of combined siXe and total range

Proof: If P < N/(Blog2 N) thenN/PB > log? N > counts equalK can be solved in the PEM model in

log Plog,(N/B). Also, sinceP < N/B?, it follows that O(sortp(N) + K/PB) 1/Os.

Combining the I/O complexities of each part of the
algorithm, concludes the proof of the lemma.

/ / — _N/P N/P
N/P > B. Thend < /N/P = J/N/P S 5 T The proofs for these corollaries are similar to the corre-
N/PB. The corollary follows. B sponding Corollaries 1 and 2.
Corollary 2. If P < min{N/(Blog N),N/B*} and M = V. OPTIMAL ORTHOGONAL LINE SEGMENT
BOW, the batched 1-D range counting problem can be INTERSECTIONREPORTING
solved in the PEM model i®(sortp(N) + K/PB) I/Os, _ . .
where K is the total sum of range counts. In this section we assume that no vertical segment par-

ticipates in more thark’ := max{N/P, K/(Plog, P)}
Proof: If P < N/(BlogN), then log(N/B) < intersections.
N/PB. And sinced < N/PB (see proof of Corollary 1),it ~ As mentioned in Section IIl, to solve the orthogonal line
follows thatO(N/PB+K/PB+d+10gP10gd(N/B)) segment intersection reporting problem, we run the distri-

O(N/PB+ K/PB+log(N/B)log, P) = O($5log; P+ bution sweeping framework from [6], and computing the
K/PB) = O(sortp(N) + K/PB). The last equality has number of intersectionsy (v), that each vertical segment
been proven in [7] ford = max{2, mlﬂ{\/ N/P,M/B}} participates in at invocatiof{®, by using our range counting
and under the assumption thiaf = B° B algorithm presented in Section IV. There are at m@stlabs

o at any given recursive level of the parallel distribution
B. Batched 1-D range counting on independent inputs sweeping framework. Thus, we can use Theorem 2 to
efficiently compute the range counting problem on up to
P independent instances. The only remaining task is to
bound the sizes of all these instances of the range counting
problems at the:*" level of recursion.

At the k" recursive level, each vertical segment appears
Theorem 2. Let A, A, ..., A, ber independent instances only in one invocation. Thus, the total number of vertical
of batched 1-D range counting problems. If eath= Q;U segments is at most. A horizontal segment may appear in
P;isz-sorted,r = O(P) and>_!_, |A;| = N, thenallthese multiple lists S’C However, a horizontal segment appears
instances can be solved @((N +K)/PB+log Plogy N+ in S¥ if and only if it participates in at least one inter-
d) I/0s in the PEM model, whet® = 37| 3" ., kgand section. Letk), denote the total number of intersection to
d = max{2, min{/N/P,M/B}}. be reported at th&!” recursive level. Then the total size

For the distribution sweeping framework, we need to solve
range counting problem on a set of different slabs in pdralle
The next theorem says that we can do it for upte O(P)
independent instances.

of all lists Sfjj is at most K. The total size of all lists Each vertical segment appears at most once at each
Rk = VF U Sk at thek™ recursive level is, therefore, recursive level, while each horizontal segment appearsein t
bounded B)zo_’_ |JR§j| =3, IV£I+ZU,. |5§j| < N+K;. input of a slab if it participates in an intersection or has an
The total sum of counts is also bounded by the total numbegndpoint in that slab. Thus, ovex(log, P) recursive levels,

of intersections to be reported at th& recursive level, that the total size of all lists is at mo§}(IV log, P+ K). Thus, if

is, K. Therefore, using Corollary 3, the range counting P < min{N/(Blog N), N/B} thenlog N = O(N/PB)
problem, and, consequently, computing the valiggv) andd = O(N/PB) and by Theorem 2 the I/O complexity
for each vertical segment € V* on the k" level of of the counting step is bounded by

J

recursion can be performed i®((N + Kj)/PB) 1/Os.

By summing this cost over all levels of recursion, we Nlog, P+ K

obtain the 1/0O complexity OEL‘E;‘P(N/PB+K;€/PB) = o (PB +log Plogy N +d
O($p log, P + K/PB) = O(sortp(N) + K/PB) for = O(sortp(N) 4+ K/PB+log N log, P + d)
all counting steps. This matches the cost of the remainder N

of the algorithm and, thus, leads to an optimal solution = 0 (sortp(N)+K/PB+ ﬁlOgd P)

with O(sortp(N) + K/PB) 1/O complexity. The space
complegdty of(th)e distr/ibuti())n sweepirF:g frz;lmework F())f [6] = O (sortp(N) + K/PB)
is O(N + K) and remains unchanged. The space complexity is increased @ N log,; P + K)

This proves the following theorem. for storing all the lists.

|

In the next section we solve the remaining task, namely,
preprocessing the input splitting heavy segments into a set
of light ones.

Theorem 3. In the PEM model, orthogonal line segment
intersection reporting can be solved 0 (sortp(N) +
K/PB) 1/0s using O(N + K) space, providedP <

: N N
min{ s3>, 57 }-

Blog™ 7 B o . V1. DIVIDING LONG SEGMENTS
A careful reader will notice that the maximum number of
)) . . . In this section we describe how to split heavy segments,

processors of this solution to the line segment intersectio.

. i.e. the segments that participate in more thAn :=
reporting problem decreased by a factor@flog N) com- . : . .
paried tg !cohe one presented iny[6]. Usin?ﬁcgroll)ary 4 an ax{N/P, K/(Plog, P)} intersections into a set of light

. ones. To be consistent with our definitions of slabs for the
the same argument as above, one can easily observe thde}t

the above algorithm achiev€(sortp(N) log, P+ K /PB) st_rlbut|on sweeping, we pre_sent a method of splitting the
: . N N . horizontal segments. The vertical segments can be pratesse
I/O complexity for P < mln{m, 5z }» Matching the

) . 2 analogously.
bounds_of AJWE‘T" et al. [6] and, consequently, providing an We start by counting the number of intersections each
alternative solution.

horizontal segment is involved in. An algorithm to perform

I:_owevEr, the_ foIIoning theorem ShOWS/that we lca_n still s in O(sortp(NN)) I/Os has been presented in [6]. Using a

achieve the optimaD(sortp(N) + K/PB) /0 complexity . 2-way distribution operation, which takeé3(N/PB) 1/Os,

for the same range of processors, at the expense of usv}g
n

liohl Thi de-off b q e extract the listH; of heavy horizontal segments, and
slightly more space. This trade-oif between space and SCafy the remainder of this section we consider only these
ability was not possible in the previous solution.

horizontal segments. For each segmemt H; we generate
Theorem 4. In the PEM model, orthogonal line @ list L, of z-coordinates such that the segments induced

segment intersection reporting can be solved inby splitting . at thesez-coordinates participate i (K”)
O(sortp(N) + K/PB) 1/0s and O(Nlog, P + K) intersections_each. Thus, each pair of adjaf:gnt entr_ies in
space, provided P < min{Blf)\ng’%} and for e€ach L, o/lef!nes a new segment that participates in at
d = max{2, min{\/N/P, M/B}}. most O(K”) intersections. Note, that the total number of
generated segments is at mésf K’ < Plog, P = O(N),
Proof: The parallel distribution sweeping algorithm becauseP < N/log N. Thus, the total size of generated
processes each level of recursion in parallel using allgsec lists L, is bounded byO(N), i.e. the number of newly
sors, one recursive level at a time. A recursive level ddesn’generated segments is still linear with the number of o&bin
depend on the reporting performed at other recursive levelssegments. It is important to note that maintaining the the
Thus, the input listsY* and RX can be generated for all entries of each listZ;, in order and in contiguous space
recursive levels at the beginning of the algorithm. Then weduring generation would add unnecessary complications to
run the range counting algorithm as before, but this time orthe algorithm. Instead, we generate these entries as tuples
the lists ofall recursive levels at once. The total number (h,2;) and construct the listd.;, at the end of the algo-
of these lists is stillO(P), thus, we can use Theorem 2 to rithm by sorting the set of tuples lexicographically. Since
bound the I/O complexity of intersection counting. > nem, [Lnl = O(N), this sorting step, which is performed

only once, does not affect the overall I/O complexity of the
algorithm.

We generate the entries @f, for all h € H;, by adapting anchorb,
the O(sortp(IN+K)) solution described in [6]. In particular,
we defer the generation of entries bf, to leaf invocations. h
Thus, at each non-leaf invocatioff we only generate h hy

the input listsY,**! for the child invocations/5 . We
will show that our approach for generating the child lists
guarantees that at a leaf invocatiéf we simply need to
cut each horizontal segmehte Y* at the slab boundaries Figure 3. An example of anchoring segmenat by.

of 0. Since the combined size of lists;, is linear, the

combined size of the input list§* at each recursive level are

also _bounded bY(N), resultipg in optimalO(sortp(N)) 4, — (21,2, y) 0 Ly, that is, we generate tuplés, ;) and
solution overO(log, P) recursive levels. (h, z,).

Let us describe the algorithm for generating child lists At each ir']\/ocatior][clyc consider a horizontal Segmehte
Y+, Given a listY?, any vertical segment that lies within y'k i 1, is completely contained within a child slay of
slab o; is added to the list*+1. Consider a horizontal «, we addh to Y +1 without any further processing.
segmenth = (z;,7z,,y) € Y, . Segmenth is added to If » has not been anchored yet and intersects at least
the child list YUijrl if o; contains one of its endpoints. one slab boundary among the child slabssofwe add the
Now, assumeh fully spans some slalb;. Let I(aé-) and leftmost such boundary;, to L, (by generating the tuple
z(o}) denote thez-coordinates of the left and the right (h,z(b,))) and splith into segmentsh; = (a1, z(bn),y)
boundaries ofs;. Consider the following subsegments of and h, = (x(bs), z,,y). We initialize the weight of each
h: hy = (z,2(0t),y) and hy = (x1,2(0}),y). Letw(hi) of the two segments a and from now on maintain the
andw(hz) be the number of vertical segments tiiatand two weights separately. Note that sinbg is the leftmost
he intersect. Note, that ifw(hy)/K’'| < |w(h2)/K'], we slab boundary thak intersects/; is completely contained
would need to cut within the slabo;, that is, add tal;, within the child slabs;, whose right boundary i&,. Hence,
somez-coordinate which falls within the range of slah. we addh; to Y(,’“j“. We process,- in the same way as we
Thus, we would like to copy: to Y+ if this condition process an anchored segmént Y*, as discussed next.
is satisfied. Then, any horizontal segment belongs to the |f is an anchored segment, assume w.l.o.g. that it is left-
input list Y, of a leaf invocation ¥, either because it has anchored, that is, its left endpoint g (the right-anchored
an endpoint withino or because it should be cut within Segments are processed Symmetrica”y)_me‘t) denote the
However, each leaf invocation contains at mdgtP vertical weight of 4 and leto;, 0;41,...,0, be the child slabs of
segments, i.e., each horizontal segment intersects at most completely spanned by. Forl < j < r, let w; be
N/ P vertical segments within the leaf slab Thus, it does the number of intersections has in slabs;. (The original
not matter where we cut within 0. So we can cutv at description of generating the listE*+1 in [6] computes
the boundaries of by creating the tuple¢h,z(c')) and the valuesw;, but is only interested in whether, > 0 and,
(h,z(a")). therefore, discards them. For our purposes here, we maintai

Unfortunately, the distribution sweeping framework can-these values.) Fof < j < r, let w; = w(h) + ST wk
not computew(h;) andw(hy) for each horizontal segment and definew;_; = w(h). We add segment to Y(fj“, for
until it reaches leaf invocations. Thus, we cannot makd < j <, if |w}_,/K'| < |w}/K']. In this case, the copy
a decision about the membership bfin the child lists of h in Y/ *! receives weightv)_,. If the right endpoint
in invocation 7*. However, as we show below, we can of } is interior to slabo, 1, we also addh to yjrﬂ, with
compute these values if both endpointd:fandh, coincide weight wl.

with boundaries of some slabs (not necessarily at the same | et us analyze the 1/0 complexity of generating the lists
invocation level). To enforce this requirement we splitfeac y’k+1 A segment: is added to list’* if and only if one of

o

horizontal segmertt into two segments at the slab boundary its’endpoints is contained in; or & must be split withing.

by, that h crosses in the earliest possible invocation. WeThe last condition is equivalent to one of the entriesgf
say the two segments asnchoredat by,. The rest of the |ying within the range spanned by slal. Thus, the total
algorithm proceeds treating the two segments as indepéndesgize of the listsY* at each invocation levet is bounded
segments and counting intersection from the anchor pgint py S |VE = O(N + Shew, |Lnl) = O(N). Then, by
rather than the left endpoint of the segment. Lemma 1 of [6], the /O complexity of generating the lists
Now we formally describe the details of the algorithm. We Y* at each level of recursion i©(N/PB). Over log, P
start by adding the left and right endpoint of each segmenievels of recursion, the total 1/O complexity of generating

Ly, adds up toO (25 log, P) = O(sortp(N)). [12] R. A. Chowdhury and V. Ramachandran, “Cache-efficient
As mentioned before, at the leaf invocatiod$ we dynamic programming for multicores,” iSPAA 2008, pp.
generate tuplegh, z(a')) and (h,z(c")), which requires 207-216.
a paraI_IeI scan of the_IistB’f. Since the combined size of [13] ——, “The cache-oblivious gaussian elimination pagadi
these lists is linear, this step takeg N/ PB) 1/Os. Theoretical framework, parallelization and experimerezil-
Finally, sorting the tuples to generate the lidgts takes uation,” in SPAA 2007, pp. 71-80.
O(sortp(N)) I/Os.
Combining the I/O complexities of each step and repeat[14]
ing the process for vertical segments proves the following

R. Cole and V. Ramachandran, “Resource-obliviousirsgrt
on multicores,” inlCALP, 2010, pp. 226-237.

theorem. [15] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Rarhao-
. d “Oblivi Igorithms fi Iti d network of
Theorem 5. If P < min{N/B%? N/logN}, a list pﬁgéssors!\{’lci)rlijligpggnzo%s. or multicores and network o

of N horizontal and vertical segments can be prepro-
cessed in the PEM model i®(sortp(N)) I/Os, such [16] G. Blelloch, P. Gibbons, and H. Simhadri, “Low depth lcac
that each segment that participates in more thAh := oblivious algorithms,” inSPAA 2010, pp. 189-199.

max{N/P, K/(Plogd P)} intersections is divided into e[%7] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. ¥fitt

smaller segments and no segment in the output participat “External-memory computational geometry,” FOCS 1993,
in more thanK’ intersections. pp. 714-723.

REFERENCES [18] L. Arge, T. Mglhave, and N. Zeh, “Cache-oblivious relddo

[1] Intel Corp., “Futuristic Intel chip could reshape howneput- line segment intersection,” iESA 2008, pp. 88-99.

e 2 Dull consurers Iteract i her PCo a4 DS940} . 5. rodel and . Fagerberg, “Cache oblvious s
archive/releases/2009/20091202corsm.htm, Dec. 2009. tsli?erslc\;\:aee\f)(;PgéSISrgCA;E;insgegr-l_/gtrzlgjg;ezggtzespg] f;éﬂ%tser
[21 gbﬁgﬁ{gﬁg;pgﬁaﬁ%rs5ngg ti)ll_/lfétlczo(;((e)SProcessorEEEE [20] A. Datta, “Efficient parallel algorithms for geometrigarti-
oo e e ' ' tioning problems through parallel range searching,1@®PP,

[3] G. Lowney, “Why Intel is designing multi-core processgr 1994, pp. 202-209.

S\é?'lable athttps://conferences.umiacs.umd.edu/paady. [21] M. T. Goodrich, “Intersecting line segments in parhikgth

an output-sensitive number of processoiSIAM J. Comp.

[4] J. Rattner, “Multi-core to the masse$jarallel Architectures vol. 20, no. 4, pp. 737-755, 1991.

and Compilation Techniques, 2005. PACT 2005. 14th Inter-

national Conference qrpp. 3-3, 2005 [22] N. Sitchinava, “Parallel external memory model — a fata

model for multi-core architectures,” Ph.D. dissertatimi-

[5] P. Gibbons, “Theory: Asleep at the switch to many-core,” versity of California, Irvine, 2009.

Workshop on Theory and Many-Cores (T&MC), May 2009.

[6] D. Ajwani, N. Sitchinava, and N. Zeh, “Geometric algbrits
for private-cache chip multiprocessors,” ESA 2010.

[7] L. Arge, M. T. Goodrich, M. J. Nelson, and N. Sitchinava,
“Fundamental parallel algorithms for private-cache chipl-m
tiprocessors,” iNSPAA 2008, pp. 197-206.

[8] A. Aggarwal and J. S. Vitter, “The input/output complgxidf
sorting and related problemsCommunications of the ACM
vol. 31, no. 9, pp. 1116-1127, 1988.

[9] L. Arge, M. T. Goodrich, and N. Sitchinava, “Parallel exbal
memory graph algorithms,” itlPDPS 2010.

[10] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszhmau
“Concurrent cache-oblivious b-trees,” iBPAA 2005, pp.
228-237.

[11] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ra-
machandran, S. Chen, and M. Kozuch, “Provably good mul-
ticore cache performance for divide-and-conquer algor#tfi
in SODA 2008, pp. 501-510.

APPENDIXA.
GLOBAL LOAD BALANCING

Let Ay, As,..., A, be arrays each of whose elements
has a positive weightv.. Assume further that < P and
> i1 [Ail = N,and letW; = 3~ __ , w. be the total weight
of the elements in arrayl;, W = 22:1 Wi, and wmax =
maxi<;<, MaxX.c4, We. Theglobal load balancingroblem
is to assign contiguoushunksof arraysA;, As, ..., A, to
processors so that each processor recaiddsg chunks and
the total weight of the elements assigned to each processor
is O(W/P + wmax). In Section I, we claimed that this
operation can be implemented usi@gN/PB+log P) 1/0Os
in the PEM model and gave a sketch of the algorithm. Here
we provide the detalils.

Without loss of generality, we also assume that every array
A; is aligned at block boundaries and its size is a multiple of
B. If that is not the case, we can pad each array with dummy
entries of weighO at the end and remove the padding after
the completion of the load balancing procedure. Note that
the padding does not asymptotically increase the total size
of the arrays because the padding is at ni®st 1 elements
for each arrayy(B —1) < P(B—1) < N elements in total
becauseP < N/B.

First we apply a prefix sum operation to the weights of
the elements in each array;. This can be implemented
using a single “segmented” prefix sum operation applied
to the concatenatiomd of arrays A, Ao, ..., A, which
does not sum across the boundary of two consecutive arrays
A; and A;y1. Thus, this step take®(N/PB + log P)

I/0s. Next we divideA into P chunks of size[N/P]|

and assign one chunk to each processor. This can be done
using simple index arithmetic oA. Each processor inspects
every element in its assigned chunk and marks it if either

e is the first element of an arrayl; or the prefix sums

W, and W,.. of ¢ and its predecessar’ in A; satisfy
|PW. /W | < |PW./W|. Next we apply a compaction
operation toA to obtain the list of marked elements, each
annotated with the arrayl; it belongs to and its position

in A;. These marked elements are the start elements of
the chunks we wanted to construct, and we assign two
consecutive chunks to each processor. The 1/O complexity
of this procedure is easily seen to BN/ PB + log P),

as it involves a prefix sum and a compaction operation, plus
sequential processing ¢fV/ P B] blocks per processor, and
one access to two consecutive elements per processor in the
array of marked elements. The constructed chunks have the
desired properties.

« Since the first element of every array; is marked,
every chunk contains elements from exactly one array
A;.

e The number of chunks is at mo&P, that is, by
assigning two chunks to each processor, we do assign
all chunks to processors. To see this, observe that the

number of marked elements per array is at most
1+ |W;P/W |, which implies that the total number of
marked elements, that is, the total number of chunks is
at mostr + P < 2P.

Every chunk has total weight at mo8t/P + wmax
To see this, consider a chunk with first elemerdand
last element’, and letiW, andW,, denote their prefix
sums. Then PW, /W | = | PW,, /W |, that is, the total
weight of the elements in the chunk, excludings at
mostW/P. Sincee has weight at mostimay, the total
weight of the chunk is at most// P + wmax.

