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Abstract—In this paper, we study parallel I/O efficient graph
algorithms in the Parallel External Memory (PEM) model, one
of the private-cache chip multiprocessor (CMP) models. We
study the fundamental problem of list ranking which leads
to efficient solutions to problems on trees, such as computing
lowest common ancestors, tree contraction and expression tree
evaluation. We also study the problems of computing the
connected and biconnected components of a graph, minimum
spanning tree of a connected graph and ear decomposition of
a biconnected graph. All our solutions on a P -processor PEM
model provide an optimal speedup of Θ(P ) in parallel I/O
complexity and parallel computation time, compared to the
single-processor external memory counterparts.

I. INTRODUCTION

With the advent of multicore architectures, and the real-

ization that processors are not increasing in speed the way

they used to, there is an increased realization that parallelism

is the primary remaining method for achieving orders of

magnitude improvements in performance, through the use

of chip-level multiprocessors (CMPs) [18], [21].

Recently Arge et al. [3] introduced the parallel external

memory (PEM) model to model the modern CMP architec-

tures. The PEM model is a parallelization of the sequential

external memory (EM) model of Aggarwal and Vitter [1]. In

this model each of the P processors contains a private cache

of size M and all the processors share a common “external”

memory (see Figure 1). The processors are not assumed

to be organized in any particular network structure; hence,

their only communication channel is through the common

shared memory. Memory is subdivided into blocks of B
contiguous memory cells, and, in any step, each processor

can read or write one such block of memory cells. Access

to the blocks is based on concurrent-read, exclusive-write

(CREW) conflict resolution protocol, but can be adapted to

have any other reasonable protocol, such as concurrent-read,

concurrent-write (CRCW) or exclusive-read, exclusive-write

(EREW). The complexity measures of the model are the

number of parallel I/Os, parallel computation time and the

total space required by an algorithm.
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Figure 1. The PEM model.

In this paper, we are interested in the design of efficient

graph algorithms in the CREW PEM model. From an algo-

rithmic standpoint, the main challenge is to exploit spatial

locality of data while maintaining maximum concurrency.

In contrast, existing shared memory parallel (e.g. PRAM)

algorithms access data in too random a pattern to utilize

spatial locality. At the same time the existing external-

memory algorithms are either too sequential [8] or rely on

message passing and routing networks to communicate be-

tween processors [15], [16]. Thus, we need new approaches

and techniques for the design of efficient PEM algorithms.

A. Prior Related Work.

With the chip multiprocessors becoming widely available,

there has been some work in designing appropriate models

for the CMPs. Bender et al. [4] proposed a concurrent cache-

oblivious model, i.e. algorithms are oblivious to the cache

parameters M and B. The authors presented and analyzed

a search tree data structure.

Blelloch et al. [6] (building on the work of Chen et

al. [7]) proposed multicore-cache model – a concurrent

cache-oblivious model which consists of a two-level mem-

ory hierarchy: a per-processor private (L1) cache and a

larger (L2) cache which is shared among all processors.

The authors consider thread scheduling algorithms for a

wide range of problems in the new model. However, their



analysis is limited to the hierarchical divide-and-conquer

problems and a moderate level of parallelism. Chowdhury

and Ramachandran [9] consider cache-complexity in both

private- and shared-cache models for matrix-based compu-

tations, including all-pairs shortest paths algorithm of Floyd-

Warshall. They also consider parallel dynamic programming

algorithms in private-, shared- and multicore-cache mod-

els [10].

In contrast to the cache-oblivious multicore-cache model,

Arge et al. [3] proposed a cache-aware parallel external

memory (PEM) model. The authors provide several basic

parallel techniques and solutions to fundamental combina-

torial problems, such as prefix sums and sorting.

The cache-oblivious models are more attractive from the

algorithm design point of view because, once designed,

the algorithms do not depend on the particular values of

the cache parameters M and B. However, just as in the

single-processor case, it is more manageable to prove tighter

bounds in the cache-aware PEM model while requiring

fewer and/or weaker assumptions.

From algorithm engineering aspect, Cong and Bader [14]

develop and analyze several practical techniques for efficient

implementation of graph algorithms on CMPs.

B. Our Results.

In this paper we are interested in continuing exploration

of the PEM model and provide a number of efficient graph

algorithms.

Section III presents the main contribution of the paper

– a solution to the well-known weighted list ranking prob-

lem [2], [13]. List ranking has traditionally been the linchpin

in the design of parallel and EM graph algorithms. The

I/O complexity of our algorithm on a list of size N is

Θ(sortP (N)) = Θ
(

N
PB logM/B

N
B

)

– time it takes to sort

an array of N items on a P -processor PEM machine. This

is a speedup of Θ(P ) over the optimal single-processor EM

algorithm, which takes Θ(sort(N)) = Θ
(

N
B logM/B

N
B

)

I/Os.

We show that while we can achieve optimal Θ(sortP (N))
I/O complexity via direct simulation of the randomized

PRAM list ranking algorithm (Section III-A), the situation

is not as simple for the deterministic case. Chiang et al. [8]

prove that the difficulty arises from the random access

pattern of following pointers in the list. Thus, to achieve

efficient memory access during simulation of the PRAM

algorithm we are forced to sort the whole list in each of the

O(log∗ N) rounds of the recursive algorithm. This results

in an extra log∗ N factor in the overall I/O complexity.

However, we achieve the optimal Θ(sortP (N)) I/O com-

plexity by developing the new delayed pointer processing

(DPP) technique – a technique for lazy batched pointer

processing. The DPP technique is described in Section III-B.

Solution to the list ranking problem opens opportunities

for the use of the Euler tour technique of Tarjan and

Vishkin [23] to solve various graph problems. The PEM

solutions to the graph problems are presented in Section IV.

All our solutions exhibit optimal Θ(P ) speedup in the par-

allel I/O and computational complexities over their single-

processor EM counterparts, while maintaining linear overall

space complexity.

II. POINTERS AND EXTERNAL MEMORY

To solve the weighted list ranking problem we will make

an extensive use of the PEM sorting algorithm of Arge et

al. [3]. Thus, throughout this paper we will make the same

assumption on the cache size M relative to the block size B,

namely that M = BO(1). Also, since the sorting algorithm

requires that the number of processors be at most N/B2,

for ease of exposition we denote the maximum allowable

number of processor by p∗ = N/B2.

While a list can be ranked in linear time in the RAM

model, Chiang et al. [8] proved that list ranking and, conse-

quently, many problems on graphs require Ω(perm(N))1

I/Os in the (single-processor) external memory model.

In the next section we will show an upper bound of

O(sortP (N)) = O(1/P · sort(N)) I/Os to rank a list.

To process lists I/O efficiently, the lists must be stored

in contiguous memory. In particular, we view each list

element as a record with fields stored in a contiguous array.

Each record contains fields for successor and predecessor

pointers, as well as any other auxiliary data required during

an algorithm. Each list element is identified by a unique

identifier, which is stored in one of the fields. A good choice

for such an identifier is the record’s original index in the

array. The successor (predecessor) fields store the values of

the identifiers of the corresponding elements in the list. For

convenience, we refer to the values stored in the successor

(predecessor) fields as the successor (predecessor) pointers.

All our algorithms require the linked lists to be doubly-

linked. The following lemma states that even if the input list

is singly-linked, we can construct its doubly-linked equiva-

lent by performing a constant number of sorting rounds.

Lemma 2.1: A singly-linked list can be converted into a

doubly-linked list in the PEM model in O(sortP (N)) I/Os.

Proof: Sort two copies of the array of records repre-

senting the linked list: one by the items’ identifiers and the

other by the items’ successor pointers. For each record in

the ith position of the first sorted array its predecessor in the

list is located in the ith position of the second sorted array.

Thus, by scanning the two sorted arrays in parallel with each

processor scanning up to ⌈N/P ⌉ records of each array, store

the identifiers of the predecessors of each item of the list

with that item. Thus, the total I/O complexity of computing

1perm(N) = min{N, sort(N)} is the number of I/Os required to
perform an arbitrary permutation of N elements, which for most realistic
values of N and B is sort(N).



the predecessor pointers is O(sortP (N) + scanP (N)) =
O(sortP (N)) I/Os.2

In light of Lemma 2.1, throughout the paper we assume

that lists are doubly-linked and each item stores the identi-

fiers of both of its immediate neighbors.

During the list ranking algorithm we will often utilize

operations on list elements which require access to the ele-

ments’ immediate neighbors. We can generalize Lemma 2.1

to show that such operations can be applied in parallel to

all items of the list in O(sortP (N)) I/O complexity in the

PEM model.

Lemma 2.2: An operation on an item of a linked list

which requires access only to the item and its immediate

neighbors can be applied to all N items of a linked list

in O(sortP (N)) I/O complexity on the P -processor PEM

model.

Proof: Sort the linked list three times: by the items’

identifiers, the successor pointers and the predecessor point-

ers. For each item in the ith position of the first sorted list the

values of the neighbors will be located in the ith position

of the other two lists. Scan the three lists simultaneously

applying the operation to the items of the first list, with

the items of the other two lists serving as operands. If the

scan is performed in parallel with each processor scanning

O(N/P ) items of each list, the total I/O complexity is

O(sortP (N) + scanP (N)) = O(sortP (N)) I/Os.

III. LIST RANKING

In this section we describe a PEM solution to the weighted

list ranking problem. Given a linked list with weights on the

edges, the rank of a node is defined as the sum of the weights

on the edges from the head of the list to the node. The goal

of the list ranking problem is to determine the ranks of every

node in the list.

We adapt the PRAM algorithmic framework of Anderson

and Miller [2] for list ranking, which is also used in the EM

algorithm of Chiang et al. [8].The pseudo-code for the PEM

list ranking algorithm is presented in Algorithm 1.

We start by initializing the ranks of each list item to 0.

Next, we find an independent set S of size Θ(N), bridge out

the elements of the independent set from the list (updating

the edge weights and item ranks in the process), recursively

solve the weighted list ranking problem on the remaining

items and, finally, reintegrate the elements of the indepen-

dent set back into the list (see Figure 2 for an example). At

the base of the recursion, when the list contains less than

PB log(t) N elements3 (for some constant t > 0 defined

by the independent set construction algorithm), we rank the

list using any O(log n) PRAM list ranking algorithm, for

example Wyllie’s pointer hopping algorithm [24].

2scanP (N) = O(N/PB) is the I/O complexity of scanning an array
of N items in parallel with each processor scanning O(N/P ) elements.

3The notation log(k) x is defined recursively as follows: log(1) x =
log x, and log(i+1) x = log log(i) x, for i ≥ 1.

Algorithm 1 PEM list ranking algorithm.

1: INITIALIZE RANKS(L, 0)

2: RANK(L, P, |L|)

3: procedure RANK(L, P, N )

4: if |L| ≤ PB log(t) N then PRAM RANK(L, P )

5: ⊲ t is some constant

6: else

7: S ← INDEP SET(L, P )

8: for each v ∈ S in parallel do:

9: BRIDGE OUT(v,L)

10: L ← L\S; RANK(L, P, N )

11: for each v ∈ S in parallel do:

12: REINTEGRATE(v,L)

13: L ← L∪ S
14: end if

15: end procedure

5 2 3 1 7

(a) The members of the independent set are shaded.

2 70 0
5 1

3

(b) The members of the independent set are bridged out.

0 7 10 18

(c) After the recursive call returns.

10 11 185 70

(d) The members of the independent set are reintegrated.

Figure 2. An example of running the list ranking algorithm. The node
ranks are listed above the nodes, the edge weights are listed below the
edges.

The seemingly strange choice for the base case of the

recursion arises from the analysis of the algorithm. In par-

ticular, if we can perform every operation of the algorithm

in O(sortP (N)) I/Os, then the I/O complexity of the list

ranking algorithm is defined by the recurrence Q(n, p) =
Q(n/c, p) +O(sortP (n)), where c is the constant defining

the size of the independent set. Indeed, the initialization

of the ranks can be achieved via parallel scan of the

elements of the list, totaling O(N/PB) = O(sortP (N))
I/Os. The bridging out and reintegration operations also

require O(sortP (N)) I/O complexity (see Appendix A for

details). However, as we will see in Section III-B, we can

construct the independent set deterministically in the sorting

I/O complexity only for up to P ≤ N
B2 log(t) N

processors,

which dictates a lower bound on the size of the list that can

be ranked using the PEM algorithm before reverting to a

PRAM algorithm.

We defer the detailed analysis of the list ranking algorithm

to Section III-C, for after the presentation of the PEM



algorithm for independent set construction in the next two

subsection.

A. Randomized Independent Set Construction

The simplest parallel solution to find an independent set

of a list is an adaptation of the random mate approach

originally proposed by Anderson and Miller [2]. The idea

is to flip an independent fair coin for each item of the list

and select the independent set consisting of the items whose

coin flip turned up heads, but whose successor’s coin flip

turned up tails. The expected size of an independent set

constructed in such a manner will be (N − 1)/4. The coin

flipping is independent of the values of the neighbors and

can be conducted via a simple scan of the items. An item’s

membership to the independent set depends only on its own

and its successor’s coin flip value and by Lemma 2.2 can

be accomplished in O(sortP (N)) I/O complexity.

B. Deterministic Independent Set Construction

The deterministic approach to finding a large independent

set is via finding a 2-ruling set of the list, which satisfies

our requirement for the size to be Θ(N).
Definition 3.1: An r-ruling set is a subset of the linked

list such that it is an independent set and the number of

consecutive unselected items is at most r. The items of the

ruling set are called rulers, each of which rules up to r of

the unselected items which follow the ruler in the list.

We adapt the deterministic coin tossing algorithm of Cole

and Vishkin [13] for finding 2-ruling set, which also defines

coloring of the list.

1) Deterministic coin tossing [13]: We assign each ele-

ment of the list a tag. These tags will determine the colors

of the nodes. The tags can be arbitrary, with the only

constraint that the tags of two neighboring elements are

distinct. Initially, we set the tag of each element to be the

element’s unique identifier.

A round of deterministic coin tossing, defines the color of

each element v in the list as 2i+b, where i is the index of the

least significant bit of where the binary representations of

v’s tag differs from the tag of succ(v), and b is the value of

the ith bit of v’s tag. For example, given list link (u, v) with

tag(u) = 2110 = 101012 and tag(v) = 5710 = 1110012,

then color(u) = 2 · 2 +1 = 5 because the two tags differ in

the 2nd bit, and the 2nd bit of tag(u) has value 1.

The coloring via deterministic coin tossing immediately

implies a solution to finding O(log N)-ruling set. In partic-

ular, the first item in the list is defined to be a ruler. For the

rest of the members of the list, an item is defined to be a

ruler if it is not an immediate neighbor of the first item in

the list and its color value is smaller than the color values

of both of its immediate neighbors in the list, i.e., its color

value is a local minima (see Figure 3 for an example). Cole

and Vishkin [13] prove that this definition of rulers defines

an O(log N)-ruling set.

ruler ruler

ruler

ruler
color

list position

Figure 3. Definition of rulers given colors after deterministic coin tossing.

Lemma 3.2: A round of deterministic coin tossing and,

consequently, O(log N)-coloring/ruling set of a linked list

can be computed in the PEM model in O(sortP (N)) I/O

complexity.

Proof: The process of computing the colors of the ele-

ments via deterministic coin tossing requires access to each

element’s tag and the tag of the item’s successor. Computing

O(log N)-ruling set requires access to each item’s color,

and colors of the item’s successor and predecessor. Thus,

by Lemma 2.2 all these operations can be accomplished in

the PEM model in O(sortP (N)) I/O complexity.

2) Finding 2-ruling set in O(sortP (N) · log∗ N) I/Os:

Note that originally there are N distinct tag values and a

single round of deterministic coin tossing assigns a color to

each element for up to O(log N) distinct colors. Now, if we

update the tags of each element to be that element’s newly

computed color and perform another round of deterministic

coin tossing, we will obtain O(log log N)-coloring of the

list, and, consequently, compute O(log log N)-ruling set of

the list. Note that during the O(log N)-coloring of the list,

no two neighbors are assigned the same color and, therefore,

the newly computed colors can be used as new tags. By

iterating this process, we obtain a solution to finding a 2-

ruling set as follows.

Initially, we set the tag of each element to be the element’s

identifier. We run deterministic coin tossing t (to be defined

later) times. This provides us with the r-coloring and, con-

sequently, 2r-ruling set4 of the list, where r = O(log(t) N).
We let the colors of the rulers be 0 and group the items by

their colors into r + 1 groups G0, . . . , Gr, where index of

the group indicates the color of the elements belonging to

it.

We next proceed in r + 1 rounds processing one group

in each round using all P processors, starting with G0 –

the group containing the rulers of the 2r-ruling set. In each

round, we identify the (remaining) items of the current group

as the 2-rulers and delete the immediate neighbors of the

4To be precise, r-coloring provides a (2r − 3)-ruling set, but for the
sake of simplicity, 2r is a good upper bound.



Algorithm 2 Simple PEM algorithm for computing 2-ruling set.

1: procedure RULING SET(L)

2: for i = 0 to t do: DET COIN TOSS(L) ⊲ Compute 2r-ruling set of L, r = O(log(t) N)
3: for ∀vR ∈ rulers(L) in parallel do: color(vR)← 0 ⊲ Set rulers’ color to 0
4: Sort L by colors, grouping items into contiguous groups G0, . . . Gr by their colors.

5: for i = 0 to r do

6: Identify items of Gi as the 2-rulers.

7: for each v ∈ Gi in parallel do: DELETE(succ(v))
8: for each v ∈ Gi in parallel do: DELETE(pred(v))
9: end for

10: end procedure

Algorithm 3 PEM algorithm for computing 2-ruling set via delayed pointer processing (DPP).

1: procedure DPP RULING SET(L)

2: for i = 0 to t do: DET COIN TOSS(L) ⊲ Compute 2r-ruling set of L, r = O(log(t) N)
3: for ∀vR ∈ rulers(L) in parallel do: color(vR)← 0 ⊲ Set rulers’ color to 0
4: for ∀v ∈ L in parallel do: store copies of succ(v) and pred(v) with v.

5: Sort L by colors, grouping items into contiguous groups G0, . . . Gr by their colors.

6: for i = 0 to r do

7: if i > 0 then ⊲ Eliminate items marked for exclusion

8: SORT(Gi); Scan Gi and remove all items that have duplicates.

9: end if

10: Identify the remaining items of Gi as the 2-rulers and compact Gi. ⊲ Add the rulers

11: Sort Gi by colors of successors. ⊲ Mark successors for exclusion

12: for each v ∈ Gi in parallel do: APPEND(succ(v), Gcolor(succ(v)))

13: Sort Gi by colors of predecessors. ⊲ Mark predecessors for exclusion

14: for each v ∈ Gi in parallel do: APPEND(pred(v), Gcolor(pred(v)))

15: end for

16: end procedure

newly identified 2-rulers. The pseudo-code is presented in

Algorithm 2.

Let’s analyze the I/O complexity of this approach.

Lemma 3.2 dictates that t rounds of deterministic coin

tossing take O(t · sortP (N)) I/Os. Grouping the items by

colors can be accomplished in O(sortP (N)) I/Os by sorting

the list by items’ color values. Identification of the 2-rulers

in Line 6 requires a simple parallel scan of elements of Gi.

However, eliminating the neighbors of the newly identified

2-rulers, by Lemma 2.2 requires sorting the entire list in each

of the r + 1 rounds. Thus, the total I/O complexity of the

algorithm adds up to O(t · sortP (N) + (r + 1) · sortP (N)).
And if we set t = log∗ N , we obtain the 2-ruling set in

O(sortP (N) · log∗ N).

Note that by running deterministic coin tossing

O(log∗(N)) rounds we can reduce the number of

colors to 4 without the need for batched parallel neighbor

deletion of lines 5 through 9. This provides us with a

5-ruling set. The 5-ruling set is still of size Θ(N), and,

therefore, it suffices for use in the list ranking algorithm.

However, the batched parallel deletion is of independent

interest and will help us reduce the I/O complexity of

finding a ruling set to O(sortP (N)) in the next subsection.

3) Computing 2-ruling set in O(sortP (N)) I/Os via

Delayed Pointer Processing: While the previous algorithm

is simple and elegant, we can improve the I/O complexity

of finding the 2-ruling set to a constant number of sorting

rounds. We achieve it via lazy batched parallel deletion of the

neighbors. We call the technique delayed pointer processing

(DPP).

The pseudo-code for computing 2-ruling set via DPP

is presented in Algorithm 3. As before, we compute r-

coloring and, consequently, 2r-ruling set (r = O(log(t) N))
by running deterministic coin tossing t times and group

items by their colors into r+1 contiguous groups. However,

this time we pick t to be an arbitrary positive constant and

before processing each group, we store with every node a
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Figure 4. Group G0 is sorted using the color of each element’s successor as the comparison key. Then for every pair of elements a = G0[i], b = G0[j]
and their successors succ(a) ∈ Gk, succ(b) ∈ Gl, if i < j, then k ≤ l.

copy of its two immediate neighbors.5

Next, we proceed in r rounds processing each color group

Gi one at a time, starting with the group containing the rulers

of the 2r-ruling set as before.

The key idea in delayed pointer processing is to delay

accessing the neighbors of the newly identified rulers as

long as possible. In particular, consider newly identified ruler

v and its neighbor w, which belongs to group Gcolor(w).

Instead of immediately accessing w and deleting it from the

list, we append a copy w′ of w at the end of Gcolor(w).

When it is the turn of Gcolor(w) to be processed, a simple

sort of only the elements of the group (rather than the whole

list) will place w and w′ in contiguous space. Thus, w and

its duplicate can be identified with a simple parallel scan

of the sorted Gcolor(w). The presence of the duplicate will

indicate that w should be removed from the list and not be

one of the 2-rulers.

The key to success of the DPP approach is storing the

copies of the neighbors with each node before processing

each group. In particular, the copies provide each node

with the colors of its two neighbors, and Gcolor(w) can be

determined locally without the need to follow the pointers

to the neighbors. Sorting the elements of each group by

using their neighbors’ colors as the comparison keys allows

us to append the duplicates I/O efficiently. In particular, all

nodes whose neighbors have the same color will be placed

in contiguous memory and, therefore, the copying can be

performed via a simple scan.

Appending the duplicates requires extra space in each

group which must be preallocated during group creation.

Note that each item has at most two neighbors, hence, each

item will acquire at most two duplicates. Therefore, for each

group we need to allocate space equal to three times the

number of elements of a particular color.

Finally, we need to determine the addresses within

Gcolor(w) where to copy the duplicates. In particular, mul-

tiple processors might be writing to the same group and

5Since each node has only two immediate neighbors, storing copies of
the neighbors increases the space requirement only by a constant factor.
However, if space usage is a concern, we can store only the comparison
keys and the colors of the two neighbors, instead of the full copies of the
nodes.

to avoid writing conflicts, the processors must determine

the destination addresses before starting the copying pro-

cess. Sorting the elements by the neighbors’ colors, places

items in memory in such a way that each processor will

copy duplicates to a consecutive sequence of groups (see

Figure 4). Thus, a simple run of segmented prefix sums

on the number of duplicates that each processor writes to

a particular group will uniquely identify the destination

addresses for all duplicates.

Let’s analyze the correctness and the I/O complexity of

the above algorithm.

Lemma 3.3: The selected set is indeed a 2-ruling set.

Proof: No two neighbors are selected in the same

round, because each group contains items with the same

color. Across the rounds, the algorithm explicitly excludes

the successors and predecessors of the items that have

already been selected. Thus, the selected items constitute

an independent set. Any unselected element has a selected

neighbor because the only reason a vertex is excluded is

because it has a selected neighbor; i.e., there are at most 2

consecutive unselected elements of the list.

Lemma 3.4: If P ≤ p∗/ log(t) N and M = BO(1),

then the I/O complexity of the 2-ruling set algorithm is

O(sortP (N)).

Proof: By Lemma 2.2 it takes O(t · sortP (N)) I/Os to

generate the r-coloring. Storing the copies of the neighbors

and grouping the items by colors takes another O(1) rounds

of sorting. Let’s say group Gi contains Ni items.

Let’s analyze the I/O complexity of processing each group

Gi. As we mentioned before, each item v has at most two

neighbors in the linked list and, therefore, each group will

at most triple in size during the duplicate addition. Thus, the

duplicate removal takes a sort and a scan of O(Ni) items.

Collecting the remaining items to be in the 2-ruling set and

packing them into contiguous space for future sorting takes a

scan and a run of prefix sums O(scanP (Ni) + log P ) I/Os.

Finally, we need to sort the newly identified members of

the 2-ruling set (O(sortP (Ni)) I/Os), compute the addresses

where the duplicates need to be written (a run of segmented

prefix sums - O(scanP (Ni) + log P ) I/Os) and copy the

duplicates. Note, that each processor writes at most 2Ni/P
duplicates, and while the sorting step puts all duplicates with



the same destination group contiguously, a processor might

have to write to up to r different groups. Thus, the total

I/O complexity of writing the duplicates is O(sortP (Ni) +
scanP (Ni)+logP +r) = O(sortP (Ni)+logP +log(t) N)
I/Os.

The only difficulty that might arise is from the fact that

some group might be smaller than the required minimum

size of PB2 for the PEM sorting. This is easily rectified

via processor scaling – reducing the number of proces-

sors involved in sorting proportionally with the problem

size. This observation provides us with Ω(B logM/B(N/B))
lower bound required to sort a group. Therefore, the total

I/O complexity of processing all rounds is

log(t) N
∑

i=1

O(sortP (Ni) + log P + log(t) N) =

O
(

sortP (N) + B logM/B(N/B) · log(t) N+

log P · log(t) N + (log(t) N)2
)

Since M = BO(1), B/ log(M/B) = Ω(1) and, therefore,

log(t) N = O
(

B log M

B

N
B

)

. And since P ≤ p∗/ log(t) N =
N

B2 log(t) N
, sortP (N) is the dominating term.

Combining this with the I/O complexity of the initial r-

coloring step and noting that t is a constant, we conclude

that the total I/O complexity of finding the 2-ruling set is

O(sortP (N)).

C. Analysis of the List Ranking Algorithm

With the solution to the independent set construction we

can analyze the I/O complexity of the recursive list ranking

algorithm described at the beginning of Section III.

Theorem 3.5: If P ≤ p∗

log B·log(t) N
and M = BO(1), a

linked list of size N can be ranked in the PEM model in

O(sortP (N)) I/Os.

Proof: As mentioned before, all steps of the PEM list

ranking algorithm (Algorithm 1) except for constructing the

independent set take O(sortP (N)) I/O complexity for up to

p∗ = N/B2 processors. The independent set construction

algorithm exhibits optimal I/O complexity of O(sortP (N))
for up to p∗

log(t) N
= N

B2 log(t) N
processors. For the case when

the problem size is PB log(t) N ≤ n < PB2 log(t) N , we

reduce the number of processors proportionally to the prob-

lem size (processor scaling), to maintain the I/O complexity

of finding an independent set at O(B log(t) N ·logM/B n/B)
I/Os. Finally, we stop the recursive list ranking algo-

rithm whenever the problem size becomes smaller than

PB log(t) N and revert to the PRAM list ranking algorithm.

The PRAM list ranking algorithm with P processors on

input of size PB log(t) N runs in O(B log(t) N + log PB)
parallel time. Since P ≤ N

B2 and M = BO(1), we observe

that O(log PB) = O(log M
B · logM/B

N
B ) = O(log B ·

logM/B
N
B ). And even if we charge a full block transfer

for each PRAM memory access, the parallel I/O complexity

of this step is O(B log(t) N + log B · logM/B N/B).
Thus, the total I/O complexity of the list ranking algorithm

is defined by the recurrence:

Q(n, p) =











































Q(n/c, p) + O

(

n

pB
logM/B

n

B

)

if n ≥ PB2 log(t) N ;

Q(n/c, p/c) + O

(

B log(t) N · logM/B

n

B

)

if PB log(t) N ≤ n < PB2 log(t) N ;

O

(

B log(t) N + log B · logM/B

N

B

)

if n < PB log(t) N.

The solution to this recursion is Q(N, P ) =

O
((

N
PB + B log B · log(t) N + log B

)

· log M

B

N
B

)

. And as

long as P ≤ N
B2 log B·log(t) N

, B log B · log(t) N = O
(

N
PB

)

.

Therefore, Q(N, P ) = O
(

N
PB log M

B

N
B

)

= O(sortP (N)).

IV. APPLICATIONS

The Euler tour technique was introduced by Tarjan and

Vishkin [23] to solve various graph problems in the PRAM

model. We follow the same framework to solve graph

problems in the PEM model.

A. Euler Tour and Basic Tree Problems

Given a tree T and a special vertex r of T , an Euler tour

of T is defined as a traversal of T that starts and ends at r
and visits every edge exactly twice: once in each direction.

Theorem 4.1: In the P -processor PEM model an Euler

tour of a tree can be built in O(sortP (N)) I/O complexity

using up to N/B2 processors.

Proof: The single-processor EM solution of Chiang et

al. [8] for building the Euler tour involves scanning the

undirected edges of the tree, replacing each one with two

directed edges, sorting the new edges lexicographically and,

finally, scanning them assigning appropriate successor for

each edge in the Euler tour order. By performing the sorting

and scanning using the corresponding PEM versions of each

subroutine, we can build the Euler tour in the PEM model

in O(sortP (N)) I/O complexity. The only constraint on the

maximum number of processors is imposed by the sorting

algorithm, which requires P ≤ N/B2.

Theorem 4.2: The following problems can be solved in

O(sortP (N)) I/O complexity using up to N
B2 log B·log(t) N

processors in the P -processor PEM model: rooting a tree,

determining preorder and postorder numbering of the ver-

tices, the depth of each vertex and the sizes of the subtrees

rooted at each vertex.

Proof: The single-processor EM solution for each of the

problems involves building an Euler tour, running weighted

list ranking with the appropriate edge weights and a constant

number of sorts and scans. With the PEM solution to



building the Euler tour, all these problems can also be

solved in the PEM model by utilizing the appropriate PEM

versions of each subroutine, each of which takes at most

O(sortP (N)) I/Os using up N
B2 log B·log(t) N

processors.

B. Tree Contraction and Expression Tree Evaluation

Trees play an important role in designing efficient parallel

algorithms. Contracting a tree in parallel has been exten-

sively studied and efficient solutions have been proposed in

the PRAM model [17], [20]. One of the applications of tree

contraction is expression evaluation, which we will use in

the next section to answer lowest common ancestor queries

efficiently.

In the PEM model, we adapt the optimal deterministic

solution in the EREW PRAM model due to Gazit et al. [17].

The PRAM solution decomposes the tree into subtrees. Each

subtree, which is called an m-bridge, is of size at most m+1.

An important property of the m-bridges is that each one

contains at most two attachments, i.e. vertices where the

m-bridge is connected to the rest of the tree. Moreover, at

most one of these attachments is a leaf of the m-bridge,

thus, each m-bridge can be processed and contracted into a

single vertex independently of other parts of the tree.

The m-bridges are easily identified by constructing an

Euler tour of the tree and performing list ranking of the

tour.

The PRAM algorithm sets m = 2N/P and decomposes

the tree into P m-bridges. Each of the P processors in

parallel contracts an m-bridge into a single vertex, hence,

reducing the size of the tree from N to P . Finally, the P
processors contract the tree of P vertices into a single vertex

in O(log P ) time.

Theorem 4.3: In the P -processor PEM model tree con-

traction and, consequently, expression tree evaluation can

be solved in O(sortP (N)) I/O complexity using up to
N

B2 log B·log(t) N
processors.

Proof: The PEM Euler tour construction and list rank-

ing algorithms allow us to decompose the tree into m-

bridges, for m = 2N/P . The properties of the m-bridges

imply that each one can be laid out in O(m/B) =
O(N/PB) blocks of memory by sorting the nodes of the

tree in the postorder. Each processor concurrently contracts

the m-bridge using the sequential EM tree contraction

algorithm of Chiang et al. [8]. Finally, the resulting P -

vertex tree is contracted into a single vertex inO(log P ) I/Os

by running the n-processor O(log n) EREW PRAM tree

contraction algorithm and charging a full I/O for each PRAM

memory access. The I/O complexity of every subroutine (in-

cluding the last one) is dominated by the sorting complexity

of the list ranking algorithm. The theorem follows.

C. Batched Lowest Common Ancestors

The lowest common ancestor (LCA) of two vertices u and

v of a rooted tree T is defined as the lowest node in T that

has both u and v as descendants.

The single-processor external memory solution to the

LCA problem is an adaptation of the PRAM solution of

Berkman and Vishkin [5]. The EM solution [8] reduces the

LCA problem to the range-minima problem, constructs a

complete (M/B)-ary search tree with O(logM/B(N/B))
levels and maintains at each internal node prefix and suffix

minima of the leaves of subtrees rooted at those nodes, as

well as a list of M/B minima of the subtrees rooted at

each child of the node. Batched LCA queries are performed

by first sorting the items, so that all of the queries can be

answered by scanning the search tree a constant number of

times.

Theorem 4.4: In the P -processor PEM model, K batched

LCA queries in a tree of size N can be answered in O((1+
K/N) · sortP (N)) I/O complexity for up to N

B2 log B·log(t) N
processors.

Proof: To adapt the single-processor EM solution to the

batched LCA problem in the PEM model, we set the branch-

ing factor of the search tree at d = min{
√

N/P , M/B} as

in the sorting algorithm of Arge et al. [3]. This changes

the depth of the tree to logd P . However, as it has been

shown in [3], logd P = O(logM/B N/B) if M = BO(1)

and P ≤ N/B2. By resorting to the PEM algorithms for

sorting, scanning and expression evaluation (for computing

the prefix and suffix minima) we can answer K batched LCA

queries in the PEM model in O((1+K/N) · sortP (N)) I/O

complexity.

D. Connected and Biconnected Components, Ear Decom-

position and Minimum Spanning Tree

In this section we show that several graph connectivity

problems on undirected graphs G = (V, E) can be solved

in the PEM model with Θ(P ) speedup in the I/O complexity

over the corresponding single-processor EM algorithms,

using up to P ≤ |V |+|E|

B2 log B·log(t) N
processors.

Consider the single-processor external memory algo-

rithm [8] for finding connected components of an undirected

graph. For each vertex v ∈ V the algorithm considers the

set of edges {v, wv} ∈ E, where wv is the neighbor of v
with the smallest identifier. The subgraph H of G induced

by these edges is a forest and the connected components

of H are identified via construction of the Euler tours for

individual trees and a run of list ranking. Each connected

component is then contracted into individual super-vertices

and any singleton super-vertices are removed from further

consideration. The algorithm proceeds recursively identify-

ing the connected components of the resulting graph. Finally,

when the recursive call returns, the singleton vertices are

reintroduced and the super-vertices are expanded into the

original subgraph H .

Theorem 4.5: Given an undirected graph G = (V, E),
connected components of the graph can be computed

in the P -processor PEM model in O(sortP (|V |) +



sortP (|E|) log(|V |/PB)) I/Os using up to
|V |+|E|

B2 log B·log(t) N
processors.

Proof: In the PEM model the single-processor EM

algorithm is implemented using the PEM versions of the

sorting, scanning and list ranking procedures. The only

difference in the algorithm lies in the base case of the

recursion. In particular, the PEM algorithm terminates the

recursion and reverts to the O(log n) PRAM connectivity

algorithm of Shiloach and Vishkin [22] as soon as the size

of the graph reaches O(PB log(t) N) vertices.

The PEM list ranking and tree contraction algorithms

require at most N
B2 log B·log(t) N

processors to maintain the

optimal O(sortP (N)) I/O complexity. Thus, once the size

of the graph reaches O(PB2 log B · log(t) N) vertices, the

I/O complexity of list ranking is maintained at O(B log B ·
log(t) N ·logM/B(n+m)/B) I/Os via processor scaling. The

total I/O complexity of the algorithm is, therefore, defined

by the recurrence:

Q(n, m, p) =






















































Q(
n

2
, m, p) +O

(

n + m

pB
logM/B

n + m

B

)

if n ≥ PB2 log B · log(t) N ;

Q(
n

2
, m,

p

2
) +O

(

B log B · log(t) N · log M

B

n + m

B

)

if PB log(t) N ≤ n < PB2 log B · log(t) N ;

O

(

B log B · log(t) N + log B · logM/B

n + m

B

)

if n < PB · log(t) N.

The solution to the recurrence is Q(n, m, P ) =

O
((

n
PB + m

PB log n
PB + B log2 B · log(t) N

)

log M

B

n+m
B

)

.

And as long as P ≤ n+m
B2 log B·log(t) N

, B log2 B ·log(t) N =

O
(

m
PB log n

PB

)

. Therefore,

Q(n, m) = O

(

( n

PB
+

m

PB
log

n

PB

)

logM/B

n + m

B

)

= O
(

sortP (n) + sortP (m) log
n

PB

)

Theorem 4.6: Given an undirected connected graphs

G = (V, E) the following problems can be solved in

O(sortP (|V |) + sortP (|E|) log(|V |/pB)) I/Os in the P -

processor PEM model using up to p ≤ |V |+|E|

B2 log B·log(t) N
processors: finding a minimum spanning tree, biconnected

components, and ear decomposition (if the graph is bicon-

nected).

Proof: The solution to finding connected components

is easily augmented to solve the minimum spanning tree

(MST) problem. In particular, when building the subgraph H ,

instead of picking the neighbor wv with the smallest iden-

tifier, the algorithm picks the one incident on the edge with

the smallest edge weight (ties are broken lexicographically

using the identifier of the edge’s endpoints as the secondary

criteria). Then the MST contains all the edges of H plus

the smallest-weight edge between the connected components

found during the recursive calls.

The biconnected components algorithm of Tarjan and

Vishkin [23] requires generating an arbitrary spanning tree,

evaluating an expression tree, and computing connected

components of the newly generated graph. The algorithm

for ear decomposition of a graph of Maon et al. [19]

requires generating an arbitrary spanning tree, performing

batched lowest common ancestor queries and evaluating

an expression tree. Using the appropriate PEM subroutines

results in the PEM solutions for each of these problems.

Note that, while the number of vertices is reduced by a

factor of 2 between iterations in the above algorithms, no

good upper bound can be given on the rate of reduction of

edges for general graphs. However, for the family of graphs

which are sparse (i.e., |E| = O(|V |)) and which are closed

under contraction, the rate of decrease of the edges between

iterations matches that of the vertices. Thus, we obtain the

following result for sparse graphs:

Theorem 4.7: For the family of sparse graphs G = (V, E)
closed under contraction, connected components, minimum

spanning tree (if G is connected), bi-connected components

and ear decomposition (if G is bi-connected) can be com-

puted in O(sortP (|V |)) I/Os in the P -processor PEM model

using up to
|V |+|E|

B2 log B·log(t) N
processors.

V. CONCLUSIONS

In this paper we extend on the work of Arge et al. [3]

and study several fundamental graph problems in the PEM

model. Our solutions provide an optimal speedup of Θ(P ) in

parallel I/O complexity and parallel computation time com-

pared to the single-processor external memory counterparts

when using up to P ≤ N
B2 log B·log(t) N

processors.

Our solution to the list ranking, connected components

and minimum spanning tree problems do not rely on the

cache parameters M and B. In fact, since the initial release

of the draft of this paper, Chowdhury et al. [11], [12] adapted

our results to the multicore-cache model, a cache-oblivious

parallel model. On the other hand, the reliance on the cache

parameters is inherent to our solutions to the tree contraction,

batched lowest common ancestor, and, consequently, to

the solutions for finding biconnected components and ear

decomposition in graphs. Thus, finding solutions to these

problems in parallel cache-oblivious models remains an open

question.
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APPENDIX

In this appendix we describe the details of bridging out

and reintegrating the nodes of the independent set.

The bridging out and reintegration operations are pre-

sented in Algorithms 4 and 5, respectively. In particular,

let v be a member of the independent set and x and y
be the elements immediately preceding and, respectively,

succeeding v in the list. The bridging out of v from the

list consists of incrementing y’s rank by the rank of v and

the weight of edge (v, y), removing node v and edges (x, v)
and (y, v) from the list and adding edges (x, y) and (y, x) to

the list with the same weights as the weight of edge (x, v).
We keep the pointers from v to its neighbors to be used

during the reintegration of v.

Once all items of the independent set are bridged out, we

still need to delete them from the array representations of

the list, save them in a separate array (for the reintegration

step) and pack the array representation into contiguous

memory. These steps can be performed by marking the

items as deleted, sorting the array using these marks as the

comparison keys (this results in the marked elements being

packed contiguously at the end of the array) and moving the



w2w1

r 2r1 r3

x v y

(a)

r 2r1

w1

w2

w2r3r 2

w1

x v y

+ +

(b)

Figure 5. An example of applying BRIDGE OUT operation on a list vertex
v.

Algorithm 4 The operation of bridging out an element from

a doubly-linked list

1: procedure BRIDGE OUT(v,L)

2: x← predL(v); y ← succL(v);
3: ⊲ Update rankings

4: rankL(y)← rankL(v) + rankL(y) + wL(v, y)
5: ⊲ Update pointers

6: succL(x)← y; predL(y)← x;

7: wL(x, y)← wL(x, v)
8: end procedure

”marked” items to a different array. Thus, deletion can be

accomplished via a constant number of sorts and scans.

The reintegration of node v back into the list consists

of removing the newly created edges (x, y) and (y, x),
reinstating edges (x, v) and (y, v) with their original weights

and setting the rank of v to be the sum of the newly

computed rank of x and the weight of edge (x, v). Examples

of application of these two operations are illustrated in

Figures 5 and 6.

When copying the members of the independent set back

to the array representation of the list, it is sufficient to simply

append them to the end of the array and sort the array by

the identifiers. Hence, copying the items back into the list

can also be accomplished via a constant number of sorts and

scans.
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Figure 6. An example of applying REINTEGRATE operation on a list
vertex v.

Algorithm 5 The operation of reintegrating an element back

into a doubly-linked list

1: procedure REINTEGRATE(v,L)

2: ⊲ Identified original neighbors

3: y ← succL(v); x← predL(y)
4: ⊲ Restore original pointers

5: predL(v)← x; succL(x)← v
6: wL(x, v)← wL(x, y); predL(y)← v;

7: ⊲ Update rankings

8: rankL(v)← rankL(v) + rankL(y) + wL(x, v)
9: end procedure

Theorem A.1: The bridging out and reintegration of all

elements of an independent set S in a linked list can

be performed in the P -processor CREW PEM model in

O(sortP (N)) I/Os.

Proof: The bridging out and reintegration operations

require access only to the neighboring elements and, by

Lemma 2.2, can be applied to all elements of S in

O(sortP (N)) I/O complexity. And since S is an indepen-

dent set, no concurrent writes are required when updating the

pointers. As mentioned before, the deletion and reinsertion

of the elements from the array representation of the list also

takes a constant number of sorts and scans. The theorem

follows.


