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Abstract

We consider the problem of placing a small number of angle guards inside a simple p&lggas to provide efficient
proofs that any given point is inside. Each angle guard views an infinite wedge of the plane, and a point can prove
membership inP if it is inside the wedges for a set of guards whose common intersection contains no points outside
the polygon. This model leads to a broad class of new art gallery type problems, which we call “sculpture garden”
problems and for which we provide upper and lower bounds. In particular, we show there is a pBlggoh that a
“natural” angle-guard vertex placement cannot fully distinguish between points on the inside and ouf3itkef

if we place a guard at every vertex &%), which implies that Steiner-point guards are sometimes necessary. More
generally, we show that, for any polygdh there is a set of + 2(h — 1) angle guards that solve the sculpture garden
problem forP, whereh is the number of holes i (so a simple polygon can be defined with 2 guards). In addition,

we show that, for any orthogonal polygdh the sculpture garden problem can be solved ugirangle guards. We

also give an example of a class of simple (hon-general-position) polygons that have sculpture garden solutions using
O(y/n) guards, and we show this bound is optimal to within a constant factor. Finally, while optimizing the number
of guards solving a sculpture garden problem for a particHlés of unknown complexity, we show how to find in
polynomial time a guard placement whose size is within a factdradthe optimal number for any particular polygon.



1 Introduction

Art gallery problems are classic in Computational Geometry and much has been written about them (e.g., see [16, 17,
20]). The main objective in such problems is to place a small number of points inside a péhgmithat this set of
points can see all aP. Motivated by realistic angles of vision that actual guards would have, of particular interest are
art gallery problems involvingngle guardgalso known as “floodlights” [9]), which study the number of angles of
measure at modR0° that are sufficient to sek.

From the standpoint of a poiptin the plane, an angle guagctan be viewed as a Boolean predicag(p), which
is true if p is inside the angle associated wittand is false otherwise. Given the polygéh we are interested in a
placement of angle guards in, around, and outétde such a way that we can define a monotoBeolean formula,
F(p), built from the angle-guard predicatds, (p), so thatF'(p) is true if and only ifp is insideP. Moreover, we desire
that the number of angle guards needed to define such a formula be small, since there may be a non-trivial expense in
deploying such a collection of guards. Thus, this problem can be viewed as a kind of art gallery problem [16, 17, 20],
where it is not sufficient that the guards merely see all of the art gallery, but instead they must colleletfirethe
geometry of the art gallery. More specifically, this problem can be viewed as a “sculpture garden” problem, where the
guards and the formul& distinguish the space of the sculpture garden from the surrounding land (without the use of
walls or fences). For example, in Figure 1 since polygon edges don'’t block the signals from the guards, the area near
vertexc is defined by the two guardsandd.

(a) (b)
Figure 1: lllustrating the sculpture garden problem. (a) an exampkrtex polygonP; (b) a set of4 angle guards
that solve the sculpture garden problem RarThe Boolean formula in this case#= abd + ¢d = d(ab + ¢).

Ideally, we would like the formuld” to be concise meaning that the values 6f(1) B,(p)'s always suffices to
prove thatF'(p) is true for any poinp inside P. There is a security dimension to this problem, in that we wish to
prove that a poinp is inside P using only angle-guard predicates. For example, if Johnny’s mother calls him on his
cell phone, he should be able to prove to her that he is inside the sculpture garden simply by telling her what a small
number of angle guards seeing him are wearing. No point outsidesbfould be able to construct a proof that it is
inside P, which is the main issue that differentiates this problem from previous geometric guarding problems. For
example, if F were in disjunctive normal form (DNF), that i%; was a disjunction of conjunctive clauses, and each
clause inf’ contained a constant number of angle-guard predicates fitveould be concise.

Incidentally, this new kind of art gallery problem was featured in the most re®ACT New<omputational
Geometry column of O’Rourke?], based on a preliminary version of this paper.

1.1 Motivating Applications

In the sculpture garden problem, the polygBris a “virtual” object, defined by the formul&, not a physical object

with “walls” for sides. The polygorP could, for example, be painted on the flboMotivation for such problems
comes, for example, frorfocalization problems in wireless mobile computing (e.g., see [6]), where we wish to
determine with certainty the position of a wireless device in a geometric environment. Such localization problems are
typically facilitated bylocators which are wireless base stations placed at fixed locations that aid the wireless devices
to determine their positions. Sculpture garden problems could be used, for example, in a localization problem where

1A Boolean formula is monotone if it contains only ANE) &nd OR ) operators; hence, has no NOT operations.
2There is, in fact, &tar Trek(Original Series) episode, “The Gamesters of Triskelion,” where three members of the Enterprise crew must fight
three adversaries while staying inside a yellow non-convex polygon painted on the floor.



we are asked to deploy a collection of locators in what can be viewed as a two-dimensional space so that a wireless
device carprovethat it belongs to a given polygonal environment. In this case, the locators would be simple, fixed base
stations that can each broadcast information inside a certain angle, such that devices outside of the broadcast angle for
a station cannot receive the transmissions from that station. Such guards could be realized physically using angular
RF antennas (if the environment has no RF reflectors), by IR transmitters with angular shields, or even visible/LASER
light transmitters with angular shields. In this context, the boolean predicates, could be associated with secret keys, so
that each angle guarglcould periodically broadcast a secret kiyin its transmission angle, so that only a wireless

device in this angle would have knowledge of this key (in which case a zero-knowledge non-interactive proof-of-
knowledge ofK" would suffice as a certificate th&, (p) is true).

Another motivating application comes frooonstructive solid geometCSG), where we wish to construct a
geometric shape from simple combinations of simple primitive shapes (e.g., see [8]). Solutions to the sculpture guard
problem can be used, for example, to construct an efficient CSG formula that defines a given polimmssibly
using fewer primitive shapes than the sizeff In addition, a concise solution to the sculpture garden problem for
P could be used, together with a point-location data structejréof the interior of P, to output inO(logn) time an
O(1)-sized point-in-polygon proof for any given poipinside P3.

1.2 Related Prior Work

Localization is becoming an important topic in wireless mobile computing, where a number of research teams are
interested in solutions that avoid the use of GPS, which has a number of practical drawbacks. For example, Bulusu
et al. [3] study how RF strength and angle can be used for sensor localization, and Sanadlg¢$8] show how to
improve the consistency of such an approach by iterative algorithms. Alternatively, HetalrfiLl4] use a potential-
field based approach and Chakrabatil. [4] use a grid-based technique for deploying locators. On the other hand,
Heet al.[13] use a random deployment and use point-in-triangle tests to determine location based on audible signals.

Of considerable relevance, of course, is prior work on using directional antennas in wireless communication net-
works. For example, Ko and Vaidya [15] discusses how to use base stations with directional antennas (as in our angle
guards) to improve network protocols, but they assume that the mobile agents already know their locations. Bao and
Garci-Luna-Aceves [1], on the other hand, use directional antennas for adaptively discovering connection directions
in an ad hoc network. We are not familiar with any existing prior work, however, that uses directional antennas for
localization itself. Nevertheless, using the results of our paper as a combinatorial justification, a companion paper [6]
addresses the implementation issues of using locators with directional antennas for mobile device localization.

As mentioned above, art gallery problems are a classic topic in Computational Geometry and much has been
written about them (e.g., see [16, 17, 20]). The starting point for this related research is a resulatsl CHv
that [n/3] point guards are sufficient and sometimes necessary to be able to fully see a simple polygomhaving
vertices. More related to the topic of this paper, “prison yard” problems [10, 16, 17, 20] seek a set of guards that can
simultaneously see both the interior and exterior of a simple polygon, in which/e#8¢é guards are sufficient and
sometimes necessary [10]. Relating to angle guards, Estivill-Castib [9] show that vertex angle guards (which
they call “floodlights”™) with angles 0t80° are sufficient to see any simple polygon and there are polygons such that
any fixed angle less than this will not. Likewise, Steiger and Streinu [19] and &oasle[2] study the complexity
of illuminating wedges with angle-restricted floodlights placed at a fixed set of points. Unfortunately, solutions to art
gallery or prison yard problems do not translate into solutions to sculpture garden problems like the ones we study in
this paper, since we are interested in more than simply seeing the inside and outside of a polygon—we wish to prove
when a point is inside a polygon using only the guards as witnesses.

Even more related to the topic of this paper is prior work on finding a CSG representation of a simple polygon, since
CSG representations can be used to prove polygon containment. Dailakifi8] describe a method for constructing
a formula F' that defines a simple polygon using primitives that are halfplanes defined by lines through polygonal
edges, so that each halfplane is used exactly once. Using our terminology, this is equivalent to a foforuéa
set ofn angle guards, with each guard placed on an edge of the polygon Wwith°adegree angle defined by the
edge. Such a formula would not, in general, be concise, however. More recently, Walker and Snoeyink [21] study the
problem of using polygonal CSG representatiantg Dobkin et al. [8], for performing point-in-polygon tests. They
experimentally consider several interesting heuristics for improving the efficiency of such tests, by “flattening” the

3Indeed, we give the details for such a data structure construction in the full version of this paper.



CSG tree defined by the formula, but they are not able to produce proofs that are guaranteed to be concise in the sense
of this paper. Likewise, Goodrich [12] shows how any CSG formula tree can be transformed into an equivalent DAG
of depthO(log n), but this again is not sufficient to guarantee conciseness in the sense of this paper (in that we desire
constant-depth formulas).
Of course, one can always triangulate [5] any polyg8nand use two angle guards to define each of the resulting
n + 2(h — 1) triangles, wheré is the number of holes i#. This would give rise to a concise formufafor defining
P, butit uses at leagtn + 4(h — 1) angle guards, which is much higher than we would like. Thus, the challenge is to
find polygon-defining formulas that use fewer thaangle guards and are preferably also concise.

1.3 Our Results

In this paper, we present a humber of results concerning the kinds and number of angle guards needed to define
various polygons (we use throughout to refer to the number of vertices of a given polygon). Specifically, we show
the following:
1. Define anatural angle-guard vertex placement to be one where we place each angle guard at a vertex of the
polygon with the angle of that vertex as the angle of the guard (as in Figure 1). We show there is a polygon
P such that a natural angle-guard vertex placement cannot fully distinguish between points on the inside and
outside of P (even if we place a guard at every vertex®). This negative result implies that there are cases
when we must use Steiner points or Steiner angles for sculpture garden problems.
2. We show that, for any polygaR, there is a set of + 2(h — 1) angle guards and an associated concise formula
F for solving the sculpture garden problem By whereh is the number of holes i? (so a simple polygon
can be defined with — 2 guards).
3. We observe that, for any convex polygfn there is a natural angle-guard vertex placement such| tty&|
guards are sufficient to solve the sculpture garden problen®fand we show this bound is optimal for any
general-position polygon (for which no two edges belong to the same line).
4. We show that, for any orthogonal polygéh(which is probably the most likely real-world application), the
sculpture garden problem can be solved usgjngatural angle guards. Together with the above result this bound
is tight for orthogonal polygons.
5. We show how any solution to the sculpture garden problem can be made concise with a small blow-up in the
number of guards.
6. We give an example of a class of simple (non-general-position) polygons that have sculpture garden solutions
usingO(+/n) guards, and we show this bound is optimal to within a constant factor.
7. We show how to find a guard placement whose size is within a fact@raffthe optimal number for any
particular polygon.
Thus, we feel this paper begins an interesting new branch of work on polygon guarding problems.

2 Natural Angle-Guard Placements

As defined above, matural angle-guard vertex placement is one where we place each angle guard at a vertex of the
polygon with the angle of that vertex as the angle of the guard. (See Figure 2a.)

(@) (b)
Figure 2: Natural angle-guard placements. (a) examples of natural angle-guard vertex placements for convex and
reflex angles of a polygon; (b) an example polygon that cannot be defined using a natural angle-guard placement, for
the point,p, inside the polygon cannot be distinguished from the pgimutside the polygon.



A natural angle-guard placement has an obvious aesthetic appeal. Unfortunately, the sculpture garden problem
cannot be solved using natural guards for some polygons.
Theorem 1. There is a pentago® such that it is impossible to solve the sculpture gardenfousing a natural
angle-guard vertex placement.

Proof. Let P be the pentagon illustrated in Figure 2b, andpléte the highlighted point inside @ and letq be the
highlighted point outside aP. Then the natural guards cannot distinguish between the two ppiatslqg. For natural
guardsa ande, both points are outside the angles they cover, while, for guardandd, both points are inside the
angles which they cover. That i8,(p) = B..(q), forz = a, b, c,d, e. Therefore, any formula built using predicates
B,, forx = a,b,c,d, e, will have identical values op andq. Sincep andq are on opposite sides of the boundary
of P, this implies that it is impossible to solve the sculpture garden probler® fgging a natural angle-guard vertex
placement. O

This theorem implies that some sculpture garden solutions must use Steiner points or Steiner angles. Nevertheless,
for orthogonal polygons, natural guard placements suffice as will be shown in Section 5.3.

3 An Upper Bound For Arbitrary Polygons

In this section we show that the sculpture garden problem can be solved fottalg polygon with at most 4+ 2(h —

1) guards and a concise formula. To prove this bound we need to establish some preliminary results presented in the
following lemmas.

Lemma 1. The sculpture garden problem can be solved with two guards for any tetragon (quadrilateral).

Proof. If the tetragon is convex, place the two natural angle-guards in any two opposite corners. If the tetragon has a
reflex vertex, place one natural angle-guard in the reflex vertex and the other in the opposite vertex (see Figure 3). The
conjunction of the two angle guards defines the tetragons in each case. O

Figure 3: Solutions for the sculpture garden problem for tetragons.

Lemma 2. The sculpture garden problem can be solved with three guards for any pentagon

Proof. Consider a tetragof’ which fully contains the pentagah and shares at lea3tconsecutive edges @f. (We
show later how to find".) By Lemma 1 we can solve the sculpture garden problem for the tetfAging exactly2
guards.
Now, sincel” shares3 consecutive edges @, it means that at leadtvertices ofP lie onT or, equivalently, there
is at mostl vertexv € P that does not lie o". That means that there are at mpstdges ofP which lie insideT
and which might not have been covered by guards. To complete the solution to the sculpture garden problem, place a
natural angle guard at vertex(If there is no such vertex, i.e. onlyedge is not covered by the guards, it means that
the pentagorP is convex and we can place a natural angle guard on either of the vertices incident on such an edge).
The final solution to the sculpture garden problem on the pentagon will be the conjunction of all the guards placed
for a total of3 guards.
To complete the proof we now describe how to find the tetréBevhich fully contains the pentagaf and shares
at least3 edges with it. Consider the convex hiil of P.
e If H consists of5 vertices (i.e. P is convex), pick anyl edges ofH. T is the tetragon which is constructed
by the intersection points of the lines on which thdsedges lie (see Figure 4(a)). Note tBatertices of the
tetragon will be shared with the original pentagon.
e If H consists oft vertices, therT’ is equal toH.
e If H consists of3 vertices, then there are two cases to consider:



1. Two edges of the pentagdhare also edges off. Note that the two edges have to be adjacent sifce
is a pentagon. LeABC DF be the pentagot with verticesA, B, and E comprising the vertices of
the convex hullH (see Figure 4(c)). Consider the edBé’ € H which is not part of the pentagah.
Of the two pentagon verticeS, D ¢ H at least one of them can be connected to W®thnd E without
intersectingP. Without loss of generality leD be such a vertex. Since each one&bénd D are adjacent
to either vertexB or E, one of the segmenfd B or DE is also an edge of the pentagér(in our example
DE € P). Then the desired tetragdn consists of the pentagon edgé®, AE and DE as well as the
segmentDB. As desired,I" fully contains the pentagof® (no edge ofl" intersectsP) andT' shares3
consecutive edges @t (AB, AE and DFE in our example).

2. Only one edge of the pentagéhis also an edge ofi. Let ABC'DE be the pentago® with AC'E being
the convex hullH (see Figure 4(d)). Pick one of the two verticBsD ¢ H. Without loss of generality
let us pick vertexB. The desired tetragol consists of the pentagon edgé#’, AB and BC' and the
edgeCF of the convex hullH. Note, that the two vertices which are not on the convex lailatd D in
our example) will never be adjacent if the convex hull shares ordgge with the pentagon. Thus, both
neighbors of each of those vertices are the vertices of the convex hull. Therefore, the two rays originating
from those vertices and shooting along the edges of the pent&ybrafd BC' in our example, since we
picked B) don't intersect the pentagaB. Thus, the tetragod BC'E fully contains the pentagoR and
shares3 consecutive edgesi, AB andBC) as desired.

C B B
D
B D \
@ &
- A
A E A E A E

(@) (b) (©) (d)
Figure 4: Various pentagorid = ABC DFE, as well as the corresponding convex hifl@nd the containing tetragons
T: (8 H = ABCDE, T = ABCF; (0) T = H = ABDE; (c) H = ABE, T = ABDE; (d) H = ACE,
T = ABCE. The corresponding solutions for the sculpture garden problem is the conjunction of all the guards
placed.

Lemma 3. The sculpture garden problem can be solved with at most 4 guards for any hexagon.

Proof. Any hexagon whose dual graph of the triangulation is not a star graph or whose triangulation can be modified
to have a non-star dual graph, can be split into two tetragons each of which (by Lemma 1) can be solved with two
angle guards for a total of four. Thus, the only interesting case is when a hexagon has a single triangulation and its
dual graph is a star graph.

Let H be such a hexagon and consider its triangulation (see Figures 5 and 6). Since this is the only triangulation,
combining any pair of triangles produces non-convex tetragons. (If that wasn't the case, we could combine two
triangles into a convex tetragon and switch the diagonal to obtain a different triangulation, which would violate the
assumption of the uniqueness of the triangulation.) Consider trighgl€’ which corresponds to the center vertex of
the dual star graph. The lines on which the edges of the triaBdlé" lie partition the plane int6 regions. For all
pairs of adjacent triangles to construct a non-convex tetragon it must be true that the virtitaad E lie in one of
the three shaded regioii, R, or R3. Since at mos® of these vertices can lie in the same shaded region, there are
two cases to consider:

1. Each vertex4, C' andE lie in its own region (Figure 5(a)). The verticés D and F’ are all reflex vertices and
the rays originating at these vertices and shooting along the edges of the polygon intersect each other only at the
polygon verticesA, C' and E. Thus, the conjunction of natural angle guards placed at the reflex vertices of the
polygon (a total oB) will define the polygon (See Figure 5(b)).

2. Two of the three verticed, C, F lie in the same region. Without loss of generality Jetand C' lie in the
same regiom?; and vertex¥ lie in region R3 (Figure 6(a)). Rays originating at verticdsandC' and shooting
along the edges of the polygon all intersect the polygon dd@e Consequently, they will all intersect edge



(b)
Figure 5: An example of a hexagon with each of the verti¢e§' andE in their own region (a) and the corresponding
solution for the sculpture garden problem (b).

EF and will never intersect edgP E except at vertexD. Thus, the polygon defined by the conjunction of
two natural angle guards at verticdsandC' and an edge guatan the edgeZ F is fully contained inside the
hexagonH. Moreover, the only part of the hexagon that is not covered by the abguards is a part of triangle
DEF near the vertext. Since we already have an edge guard at the étjeve can cover the whole triangle
DEF by placing one additional angle guard at verfexvhose wedge is defined by the rapd’ andDFE (See
Figure 6(b)). Thus, a total af guards is sufficient to guard this hexagon.

O

(b)
Figure 6: An example of a hexagon with two verticésandC in the same region (a) and the corresponding solution
for the sculpture garden problem (b).

Lemma 4. Any polygonP with more than three vertices can be partitioned into a collection of tetragons, pentagons
and at most one hexagon whose dual triangulation tree is star-shaped.

Proof. Consider a dual spanning tree of a triangulation of the polygpwhich is necessarily a degree-three tree. If
the tree is a two-, three- or star-shaped four-node tree, we are done because the corresponding polygon is a tetrahedron,
a pentagon or a hexagon.

If there are more than four nodes in the tree or the four-node tree is not star-shaped, recursively trim the tree in the
following way. Pick a lea such that’s neighboru has one of the following properties:

1. u has degree@ andu’s neighborw # v is not a leaf.

2. u has degre8 andexactly oneof u’s other neighborsv, 2 # v is also a leaf. Without loss of generality, ket

be an internal node, i.e. not a leaf.
(Note, unless the tree is one of the base cases, a l@éh one of the two properties always exists because the tree is
a binary one.)

If u has propertyl, then removev andw from the tree and add the tetragon, associated with the removed two
nodes of the tree into the collection.«dfhas property, then remove:, v, andz from the tree and add the pentagon
associated with the removed three nodes of the tree into the collection.

Continue the trimming until the tree is a two-, three- or star-shaped four-node tree. At each step we removed a
tetragon or a pentagon from the polygBn Since we were removing only leaves with their (common) neighbors at
each step, the tree stays connected throughout the trimming process. Therefore, the star-shaped four-node tree could
have emerged only at the end of the trimming process, i.e. there will be only one hexagon.

There cannot be a single triangle left after the partitioning for the following reason. A single triangle corresponds
to a single node in the dual tree. If there is any single node left after the trimming process it wauldHogvever, in
both propertied and2 nodew is not a leaf and, therefore, cannot be the only node left after the trimming.

4An edge guards an angle guard with #880° angle defined by the edge on which it is placed.



Therefore, we can always partition the polygon into a collection of tetragons, pentagons and at most one hexagon
with a star-shaped dual triangulation tree. O

Theorem 2. n + 2(h — 1) guards are sufficient to solve the sculpture garden problem with a concise formula with the
length of the proof certificate at most three for any polygon wittoles.

Proof. Consider a triangulation of the polygon. Partition the polygon into the collection of tetragons, pentagons and
at most one hexagon as in Lemma 4. Each tetragon will consist of two triangles and by Lemma 1 can be covered
by two guards. Each pentagon will consist of three triangles and by Lemma 2 can be covered by three guards. The
hexagon (if there is one) will consist of four triangles and by Lemma 3 can be covered by four guards. Thus, the
number of required guards will be the same as the number of triangles in the triangulation, whi¢h2ig: — 1).

The formula for the whole polygon will be the disjunction of the formulas for each of the smaller polygons, which (by
Lemmas 1, 2, and 3) are conjunctions of length at most three. Thus, each proof certificate will be at most of length
three. O

4 Lower Bounds

In this section we discuss some lower bounds for sculpture garden problems. We begin with the theorem which
establishes a lower bound on the number of guards for arbitrary polygons.

Theorem 3. At least| % | guards are required to solve the sculpture garden problem for any polygon with no two
edges lying on the same line.

Proof. Assume less thaf¥; | guards can guard a particular polygon. Then there exists arceslgieh is not collinear

with any of the guards’ boundary lines of the angle which they guard. This implies that there exists a non-empty region
R which is fully located on one side (inside or outside) of each guard’s guarded region and such thasgldge?

into two subregiong?; and R,. Without loss of generality assunie, is inside the polygon an®, is outside the
polygon. Then no guard can distinguish whether a point Bij@ndRs, i.e., no guard can distinguish between points
inside and outside the polygon. Thus, less than guards cannot guard a polygon. O

Theorem 3 provides a general lower bound on the number of guards for an arbitrary general-position polygon. For
non-general-position polygons the following lower bound applies.
Theorem 4. Anyn-sided polygon require€(,/n) guards.

Proof. If a polygonP is defined by angle guards, theR can have at most(2g — 1) polygon vertices, as each vertex
occurs at the intersection of two of tBe rays bounding guard regions. O

5 Polygon Classes that Require Fewer than — 2 Guards

In this section we consider classes of polygons for which the general upper boun@ giiards for arbitrary polygons
can be considerably improved.

5.1 Convex Polygons

We begin with an observation that, for convex polygons, diJy guards are required to solve the sculpture garden
problem.

Theorem 5. [ ] guards are always sufficient to solve the sculpture garden problem for any convex polygon by placing
the natural angle-guards in every other vertex of the polygon.

Proof. Each natural angle-guard guards a region which fully contains the polygon. The intersection of these regions
is the convex hull of the polygon, which is the polygon itself, since it is convex. Thus, the conjunction of the guards
placed in every other corner of the convex polygon will define the polygon itself. O

Together with the general lower bound on the number of guards, the above theorem shols| tisaa tight
bound on the number of guards required to solve the sculpture garden problem for convex polygons. The formula is
not concise, of course, but we show in Section 6 how to make it concise with a small blow-up in the number of guards.



5.2 Polygons with a Sublinear Number of Guards

We now present a class of polygons for which a square-root number of guards is sufficient to solve the sculpture garden
problem, providing an upper bound within a constant factor of the lower bound of Theorem 4.

Theorem 6. There exisk.-sided simple polygons that can be guarded conciselp @yn) guards in a natural vertex
placement.

Proof. Form a line arrangement in the form of a grid with horizontal lines andk vertical lines, and le be a
polygon with boundaries that zigzag between pairs of vertical lines in the grid, as shown in Figure 7. With such a
construction we can form a vertex &f at every arrangement vertex except for some of the vertices on the top and
bottom horizontal lines of the arrangement,Bdas(2(k?) vertices; by finding the next larger polygon of this form

and then simplifying it we can find for any a polygon withn vertices, the edges of which belong to a grid with

k = O(y/n). We placel6k guards, one on each side of each line of the arrangement (using natural angle guards
placed at vertices). Using these guards, we can separately guard each rectangle of the arrangement,fanditrence
four guards per point. O

Figure 7: An example polygon that can be defined wity/n) angle guards.

A natural question raised by this example is whether it is always possible to find an angle-guard placement that
minimizes the number of guards for a particular polygon. Although we leave this as an open problem, we show in the
next theorem that we can always achie@approximation for this problem.

Theorem 7. For any polygonP, we can find in linear time a collection of guards & using a number of guards
that is within a factor of two of optimal.

Proof. For each halfplane for which a portion of the boundary of the halfplane is used as one of the boundary edges
of P, place an edge guard on the line bounding the halfplane, and construct the Peterson CSG formula.[8) for

any collection of guards faP, each such halfplane must be guarded by one of the two rays from one of the guards, so
the optimal number of guards is at least half the number of guards used. O

5.3 Orthogonal Polygons

We now consider the case when the input is a polygon with axis-parallel sides (ioethagonal polygoh Note that
for ann-sided orthogonal polygom, must always be even: there are exactly as many horizontal edges as there are the
vertical ones.
Definexy-monotongolygon to be an orthogonal polygon which is monotone with respect to theg line. We
call the vertices of the polygon tangent to the= y line theextreme verticesNote that thery-monotone polygon
has alternating convex and reflex vertices with the exception of the extreme points. Intuitirefyynotone polygon
looks like a staircase descending from upper left corner to the lower right one (see Figure 8).
Theorem 8. 5 guards are always sufficient to guard ap-monotone polygon.

Proof. Place the natural angle guards at every reflex vertex of the polygon as well as the extreme vertices. Such
placement puts a guard in every other vertex for a totd) .oThe guards at the extreme vertices define the bounding
box of the polygon, while the guards at the reflex vertices "carve out” the shape of the staircase.

The resulting formula for the polygon is the conjunction of all the guards. O



Using definitions from [16], call a horizontal edge of an orthogonal polytgpredge if the interior of the polygon
lies below it andbottomedge if the interior lies above iLeftandright edges are defined similarly.

extreme vertex ~_ top edge

'@ / . right edge

&—g
P " —_extreme vertex

leftedge —™

bottom edge
Figure 8:zy-monotone polygon with guards placed in every other vertex.

Lemma 5. Place natural angle guards in every other vertex of an orthogonal poly@oithe following statements
are equivalent;

1. Top edges have guards at their left end points

2. Left edges have guards at their top end points

3. Right edges have guards at their bottom end points

4. Bottom edges have guards at their right end points
Moreover, if any of the above statements holds for a single edge, it holds for all the edges of that type.

Proof. 1 = 2andl = 3;2=1and2 = 4;3 = 1and3 = 4;4 = 2 and4 = 3.
O

Theorem 9. % natural angle guards are always sufficient to solve the sculpture garden problem for any orthogonal
polygonP.

Proof. Pick a top edge and place a natural angle guard at its left end point. Place natural angle guards in every other
vertex after that. By Lemma 5, since condition 1 holds for edgdl four conditions of Lemma 5 hold for all edges.

The claim is that these guards are sufficient to solve the sculpture garden problBmifiee proof is by induction on

the number of reflex vertices of the polygon which do not have guards in them, callthgunarded reflex vertices

Base case The guards are placed in every other vertex, every reflex vertex has a guard in it, and conditions of
Lemma 5 are satisfied. It is easy to verify that these conditions imply that the polyggmi®notone and since the
placement of the guards in the polygon is exactly as it is in the proof of Theorem 8, it follows that the polygon can be
guarded using the placed guards.

Inductive hypothesis Assume guards placed in every other vertex with the conditions of Lemma 5 satisfied are
sufficient to solve the sculpture garden problem for any polygon which has lesk tiryuarded reflex vertices. We'll
show how to solve the sculpture garden problem for a polyfavith k£ unguarded reflex vertices.

Pick any unguarded reflex vertex Considerv’s neighboring verticep andq. Since we placed guards in every
other vertex and doesn’t have a guard, then there must be guargsimlg. Letv’ be the intersection of the polygon
boundary with the ray originating from and containing the segmept. The edgepv’ splits P into two smaller
polygons each with at mogt— 1 unguarded reflex vertices. Of the two resulting polygons consider the one whose
interior lies on the same side of the edgé as the interior of polygo® with respect to the edge. Using Lemma 5
it is easy to verify that”’ has guards in every other vertex and the conditions of Lemma 5 still hold. $hhas
at mostk — 1 unguarded reflex vertices, by the inductive hypothesis we can gefandthout adding any additional
guards (see Figure 9(a)). Similarly, we can guard the poly@gbmesulting from extending ray frompand containing
the segmengv (see Figure 9(b)).

SinceP = P’ U P”, the formula forP is defined as the disjunction of formulae for polygdPisand P”.

O

Combining the above result and Theorem 3 we get the following result for orthogonal polygons.
Theorem 10. 3 guards are sometimes necessary and always sufficient to solve the sculpture garden problem for
orthogonal polygons.



(@) (b)

Figure 9: lllustration of reducing the sculpture garden problem to two smaller subproblems.

6 Conciseness Trade-offs

The formula we provided for convex polygons in the proof of Theorem 5 is optimal as far as the number of required
guards goes. However, it is not concise; in fact, the proof certificate is as long as the formula itsglf] i.@his is

far from the desired (1) bound for conciseness provided with other polygons in this paper. The following theorem
provides a trade-off between the number of required guards and the conciseness of the formula.

Theorem 11. Let P be a polygon taken from a class of polygons that is closed under partitioning via diagonals and
such thatr-vertex polygons of this class can be defined vfith) angle guards. Then there is a concise solution to

the sculpture garden problem fd? that usesO(nf(c)/c) guards, where: is the maximum desired size of a proof a
point is insideP.

Proof. TriangulateP. If P is not simple, then add diagonals so that the dual to the triangulation isA.tRerform a
recursive centroid decomposition [11]5f stopping as soon as a subtree has size at&stch cut ofl” corresponds

to our adding diagonals tB and this entire process introdua@$én/c) subpolygons (of the same classif each of
size at most. Thus, each subpolygon can be defined with) angle guards, and we can define a concise formula for
P that is the disjunction of the formulas for the subpolygons. O

For example, we can produce a concise guarding of a convex polyging [n/2](1 + €) guards so that any
point can prove it is insid® usingO(1/¢) guards, for any constaat> 0.

7 Conclusion

In this paper, we introduced the sculpture garden problem for placing angle guards in such a way as to define a polygon
P and prove when points are inside We presented a number of results concerning the kinds and number of guards
needed to define various polygons. We providedithe 2 upper ands lower bounds for general polygons. We also
provided several classes of polygons which require substantially fewer guards than the general upper bound. We feel
this paper begins an interesting new branch of work on polygon guarding problems and hope that it will inspire future
work in this direction.
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